Ir al contenido

Documat


Resumen de Discovering topics in Twitter about the COVID-19 outbreak in Spain

Marvin Matías Agüero Torales, David Vilares Calvo Árbol académico, Antonio Grabriel López Herrera Árbol académico

  • español

    En este trabajo, analizamos lo que los usuarios han estado discutiendo en Twitter durante el comienzo de la pandemia causada por el COVID-19. Concretamente, analizamos tres fases diferenciadas de la crisis del COVID-19 en España: el propio tiempo de pre-crisis, el estallido de la enfermedad y el confinamiento. Para llevar esto a cabo, primero recolectamos una gran cantidad de tuits que son preprocesados. A continuación, agrupamos los tuits en distintas temáticas usando un modelo de Latent Dirichlet Allocation, y definimos estrategias generativas y discriminativas para extraer las palabras clave y oraciones más representativas para cada tema. Finalmente, incluimos un exhaustivo análisis cualitativo sobre dichos temas, y cómo estos se corresponden con distintas problemáticas surgidas en España en distintos momentos de la crisis.

  • English

    In this work, we apply topic modeling to study what users have been discussing in Twitter during the beginning of the COVID-19 pandemic. More particularly, we explore the period of time that includes three differentiated phases of the COVID-19 crisis in Spain: the pre-crisis time, the outbreak, and the beginning of the lockdown. To do so, we first collect a large corpus of Spanish tweets and clean them. Then, we cluster the tweets into topics using a Latent Dirichlet Allocation model, and define generative and discriminative routes to later extract the most relevant keywords and sentences for each topic. Finally, we provide an exhaustive qualitative analysis about how such topics correspond to the situation in Spain at different stages of the crisis.


Fundación Dialnet

Mi Documat