Este artículo presenta un modelo BERT monolingüe para el gallego. Nos basamos en la tendencia actual que ha demostrado que es posible crear modelos BERT monolingües robustos incluso para aquellos idiomas para los que hay una relativa escasez de recursos, funcionando éstos mejor que el modelo BERT multilingüe oficial (mBERT). Concretamente, liberamos dos modelos monolingües para el gallego, creados con 6 y 12 capas de transformers, respectivamente, y entrenados con una limitada cantidad de recursos (~45 millones de palabras sobre una única GPU de 24GB.) Para evaluarlos realizamos un conjunto exhaustivo de experimentos en tareas como análisis morfosintáctico, análisis sintáctico de dependencias o reconocimiento de entidades. Para ello, abordamos estas tareas como etiquetado de secuencias, con el objetivo de ejecutar los modelos BERT sin la necesidad de incluir ninguna capa adicional (únicamente se añade la capa de salida encargada de transformar las representaciones contextualizadas en la etiqueta predicha). Los experimentos muestran que nuestros modelos, especialmente el de 12 capas, mejoran los resultados de mBERT en la mayor parte de las tareas.
This paper presents a monolingual BERT model for Galician. We follow the recent trend that shows that it is feasible to build robust monolingual BERT models even for relatively low-resource languages, while performing better than the well-known official multilingual BERT (mBERT). More particularly, we release two monolingual Galician BERT models, built using 6 and 12 transformer layers, respectively; trained with limited resources (~45 million tokens on a single GPU of 24GB). We then provide an exhaustive evaluation on a number of tasks such as POS-tagging, dependency parsing and named entity recognition. For this purpose, all these tasks are cast in a pure sequence labeling setup in order to run BERT without the need to include any additional layers on top of it (we only use an output classification layer to map the contextualized representations into the predicted label). The experiments show that our models, especially the 12-layer one, outperform the results of mBERT in most tasks.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados