Ir al contenido

Documat


Optimizing the quarantine cost for suppression of the Covid-19 epidemic in Mexico

  • Autores: Abdon E. Choque Rivero, Evgenii N. Khailov, Ellina V. Grigorieva
  • Localización: Revista de Matemática: Teoría y Aplicaciones, ISSN 2215-3373, ISSN-e 2215-3373, Vol. 28, Nº. 1, 2021, págs. 55-78
  • Idioma: inglés
  • DOI: 10.15517/rmta.v28i1.42077
  • Títulos paralelos:
    • Optimización del costo de la cuarentena para la supresión de la epidemia del Covid-19en México
  • Enlaces
  • Resumen
    • español

      En este trabajo empleamos la teoría de control óptimo para encon-trar una cuarentena óptima y estrategias para la erradicación de la propa-gación de la infección por COVID-19 en la población humana mexicana.En un modelo SEIR, introducimos un control acotado que es una fun-ción respecto del tiempo, la cual refleja las medidas de la cuarentena. Lafunción objetivo a minimizar es la suma ponderada del nivel total de in-fección en la población y el costo total de la cuarentena. Planteamos unproblema de control óptimo que representa la búsqueda de una estrate-gia eficaz de una cuarentena. Resolvemos este problema analíticamente ynuméricamente. Establecemos analíticamente las propiedades del controlóptimo correspondiente aplicando el principio del máximo de Pontryagin.La solución óptima se obtiene resolviendo un problema de valor de fron-tera de dos puntos asociado al principio del máximo. Usamos el softwareMATLAB. Presentamos una discusión detallada de los resultados y lascorrespondientes conclusiones prácticas

    • English

      This paper is one of the few attempts to use the optimal control theoryto find optimal quarantine strategies for eradication of the spread of theCOVID-19 infection in the Mexican human population. This is achievedby introducing into the SEIR model a bounded control function of timethat reflects these quarantine measures. The objective function to be min-imized is the weighted sum of the total infection level in the populationand the total cost of the quarantine. An optimal control problem reflectingthe search for an effective quarantine strategy is stated and solved analyti-cally and numerically. The properties of the corresponding optimal controlare established analytically by applying the Pontryagin maximum princi-ple. The optimal solution is obtained numerically by solving the two-pointboundary value problem for the maximum principle using MATLAB soft-ware. A detailed discussion of the results and the corresponding practicalconclusions are presented.

  • Referencias bibliográficas
    • I.H. Aslan, M. Demir, M.M. Wise, S. Lenhart, Modeling COVID-19: forecasting and analyzing the dynamics of the
    • outbreak in Hubei and Turkey, MedRxiv (2020), 1–17. Doi: 10.1101/2020.04.11.20061952
    • F. Brauer, C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Springer, New York
    • Heidelberg-Dordrecht-London, 2012. Doi: 10.1007/978-1-4614-1686-9
    • Z. Cao, Q. Zhang, X. Lu, D. Pfeiffer, Z. Jia, H. Song, D.D. Zeng, Estimating the effective reproduction number of the
    • nCoV in China, MedRxiv, (2020), 1–8. Doi: 10.1101/2020.01.27.20018952
    • T.-M. Chen, J. Rui, Q.-P. Wang, Z.-Y. Zhao, J.-A. Cui, L. Yin, A mathematical model for simulating the phase-based
    • transmissibility of a novel coronavirus, Infect. Dis. Poverty. 9(2020), no. 24, 1–8. Doi: 10.1186/s40249-020-00640-3
    • W.H. Fleming, R.W. Rishel, Deterministic and Stochastic Optimal Control, Springer-Verlag, Berlin, 1975. Doi:
    • 1007/978-1-4612-6380-7
    • H. Gaff, E. Schaefer, Optimal control applied to vaccination and treatment strategies for various epidemiological models, Math. Biosci. Eng....
    • Gobierno de la Ciudad de México, El modelo epidemiológico del Gobierno de la Ciudad de México, 2020. https://modelo.covid19.cdmx.gob.mx/modelo-epidemico
    • Gobierno de México, Proyecciones de la población de México y de las entidades federativas, 2016-2050, CONAPO, 2019. https://www.gob.mx/cms/uploads/attachment/file/487395/09_CMX.pdf
    • Gobierno de México, Indicadores demográficos de México de 1950 a 2050, CONAPO,
    • http://www.conapo.gob.mx/work/models/CONAPO/Mapa_Ind_Dem18/index_2.html
    • Gobierno de México, Aviso epidemiológico – Casos de infección respiratoria asociados a Coronavirus (COVID-19),
    • Dirección General de Epidemiología, 2020. https://www.gob.mx/salud/es
    • E.V. Grigorieva, E.N. Khailov, Optimal intervention strategies for a SEIR control model of Ebola epidemics,
    • Mathematics 3(2015), no. 4, 961–983. Doi 10.3390/math3040961
    • E.V. Grigorieva, E.N. Khailov, Estimating the number of switchings of the optimal interventions strategies for SEIR
    • control models of Ebola epidemics, Pure and Applied Functional Analysis 1(2016), no. 4, 541–572.
    • E.V. Grigorieva, P.B. Deignan, E.N. Khailov, Optimal control problem for a SEIR type model of Ebola epidemics, Revista de Matemática: Teoría...
    • E. Grigorieva, E. Khailov, Optimal preventive strategies for SEIR type model of the 2014 Ebola epidemics, Dyn.
    • Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms. 24(2017), 155–182.
    • E. Grigorieva, E. Khailov, Determination of the optimal controls for an Ebola epidemic model, Discrete Cont. Dyn.
    • Syst. Ser. S. 2018, vol. 11 (6), 1071–1101. Doi: 10.3934/dcdss.2018062
    • J. Jia, J. Ding, S. Liu, G. Liao, J. Li, B. Duan, G. Wang, R. Zhang, Modeling the control of COVID-19: impact of policy
    • interventions and meteorological factors, Electron J. Differ. Eq. 23(2020), 1–24. https://ejde.math.txstate.edu/Volumes/2020/23/jia.pdf
    • Y. Jing, L. Minghui, L. Gang, Z.K. Lu, Monitoring transmissibility and mortality of COVID-19 in Europe, Int. J. Infect. Dis. (2020), 1–16....
    • E. Jung, S. Lenhart, Z. Feng, Optimal control of treatments in a twostrain tuberculosis model, Discrete Cont. Dyn.
    • Syst. Ser. B. 2(2002), no.4, 473–482. Doi: 10.3934/dcdsb.2002.2.473
    • U. Ledzewicz, H. Schättler, On optimal singular controls for a general SIR-model with vaccination and treatment,
    • Discrete Cont. Dyn. Syst. 2011, supplement, 981–990.
    • E.B. Lee, L. Marcus, Foundations of Optimal Control Theory, John Wiley&Sons, New York NY, USA, 1967. Doi:
    • 2307/2343766
    • Y. Liu, A.A. Gayle, A. Wilder-Smith, J. Rocklöv, The reproductive number of COVID-19 is higher compared to SARS
    • coronavirus, J. Travel Med. 2020, 1–4. Doi: 10.1093/jtm/taaa021.
    • Z. Liu, P. Magal, O. Seydi, G. Webb, Understanding unreported cases in the COVID-19 epidemic outbreak in
    • Wuhan, China, and the importance of major public health interventions, Biology 9(2020), no. 50, 1–12.
    • Doi: 10.3390/biology9030050
    • J.P. Mateus, P. Rebelo, S. Rosa, C.M. Silva, D.F.M. Torres, Optimal control of non-autonomous SEIRS models with
    • vaccination and treatment, Discrete Cont. Dyn. Syst. Ser. S. 11(2018), no. 6, 1179–1199. Doi:10.3934/
    • dcdss.2018067
    • M. Park, A.R. Cook, J.T. Lim, Y. Sun, B.L. Dickens, A systematic review of COVID-19 epidemiology based on current
    • evidence, J. Clin. Med. 2020, 9, 967, 1–13. Doi: 10.3390/jcm9040967
    • L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, and E.F. Mishchenko, Mathematical Theory of Optimal
    • Processes, John Wiley & Sons, New York NY, USA, 1962.
    • F. Saldaña, H. Flores-Arguedas, J.A. Camacho-Gutiérrez, I. Barrandas, Modeling the transmission dynamics and
    • the impact of the control interventions for the COVID-19 epidemic outbreak, Math. Biosci. Eng., 2020. https://www.researchgate.net/publication/340902930_Modeling_the_transmission_dynamics_and_the_impact_of_the_control_interventions_for_the_COVID-19_epidemic_outbreak
    • H. Schättler, U. Ledzewicz, Optimal Control for Mathematical Models of Cancer Therapies: An Application of
    • Geometric Methods, Springer, New York-Heidelberg-Dordrecht-London, 2015.
    • C.J. Silva, D.F.M. Torres, Optimal control for a tuberculosis model with reinfection and post-exposure interventions, Math. Biosci. 244 (2013),...
    • R. Smith?, Modelling Disease Ecology with Mathematics, AIMS, Springfield MO, USA, 2008.
    • B. Tang, X. Wang, Q. Li, N.L. Bragazzi, S. Tang, Y. Xiao, J. Wu,
    • Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions, J. Clin.
    • Med. 9(2020), no. 462, 1–13. Doi: 10.3390/jcm9020462
    • P. van den Driessche, J. Watmough, Reproduction numbers and subthreshold endemic equilibria for
    • compartmental models of disease transmission, Math. Biosci. 180(2002), 29–48. Doi: 10.1016/s0025
    • 02)00108-6
    • World Health Organization, Coronavirus disease (COVID-2019) situation reports. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
    • J.T. Wu, K. Leung, G.M. Leung, Nowcasting and forecasting the potential domestic and international spread of
    • the 2019-nCoV outbreak originating in Wuhan, China: a modelling study, Lancet, 395(2020), no. 10225 , 689–
    • Doi: 10.1016/S0140-6736(20)30260-9
    • S. Zhao, Q. Lin, J. Ran, S.S. Musa, G. Yang, W. Wang,..., M.H. Wang, Preliminary estimation of the basic reproduction number of novel coronavirus...
    • Z. Zhuang, S. Zhao, Q. Lin, P. Cao, Y. Lou, L. Yang, D. He, Preliminary estimation of the novel coronavirus disease (COVID-19) cases in Iran:...
    • 2020), 29–31. Doi: /10.1016/j.ijid.2020.01.050

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno