Ir al contenido

Documat


n-Excisive functors, canonical connections, and line bundles on the Ran space

  • James Tao [1]
    1. [1] Cambridge, USA
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 27, Nº. 1, 2021
  • Idioma: inglés
  • DOI: 10.1007/s00029-020-00611-4
  • Enlaces
  • Resumen
    • Let X be a smooth algebraic variety over k. We prove that any flat quasicoherent sheaf on {\text {Ran}}(X) canonically acquires a \mathscr {D}-module structure. In addition, we prove that, if the geometric fiber X_{\overline{k}} is connected and admits a smooth compactification, then any line bundle on S \times {\text {Ran}}(X) is pulled back from S, for any locally Noetherian k-scheme S. Both theorems rely on a family of results which state that the (partial) limit of an n-excisive functor defined on the category of pointed finite sets is trivial.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno