Ir al contenido

Documat


Tropical Lagrangians in toric del-Pezzo surfaces

  • Jeffrey Hicks [1]
    1. [1] University of Cambridge

      University of Cambridge

      Cambridge District, Reino Unido

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 27, Nº. 1, 2021
  • Idioma: inglés
  • DOI: 10.1007/s00029-020-00614-1
  • Enlaces
  • Resumen
    • We look at how one can construct from the data of a dimer model a Lagrangian submanifold in (\mathbb {C}^*)^n whose valuation projection approximates a tropical hypersurface. Each face of the dimer corresponds to a Lagrangian disk with boundary on our tropical Lagrangian submanifold, forming a Lagrangian mutation seed. Using this we find tropical Lagrangian tori L_{T^2} in the complement of a smooth anticanonical divisor of a toric del-Pezzo whose wall-crossing transformations match those of monotone SYZ fibers. An example is worked out for the mirror pair (\mathbb {CP}^2{\setminus } E, W), {\check{X}}_{9111}. We find a symplectomorphism of \mathbb {CP}^2{\setminus } E interchanging L_{T^2} and a SYZ fiber. Evidence is provided that this symplectomorphism is mirror to fiberwise Fourier–Mukai transform on {\check{X}}_{9111}.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno