Reino Unido
We provide a semiorthogonal decomposition for the derived category of fibrations of quintic del Pezzo surfaces with rational Gorenstein singularities. There are three components, two of which are equivalent to the derived categories of the base and the remaining non-trivial component is equivalent to the derived category of a flat and finite of degree 5 scheme over the base. We introduce two methods for the construction of the decomposition. One is the moduli space approach following the work of Kuznetsov on the sextic del Pezzo fibrations and the components are given by the derived categories of fine relative moduli spaces. The other approach is that one can realize the fibration as a linear section of a Grassmannian bundle and apply homological projective duality.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados