Ir al contenido

Documat


Polynomial graph invariants and the KP hierarchy

  • Sergei Chmutov [1] ; Maxim Kazarian [2] ; Sergei Lando [2]
    1. [1] Ohio State University

      Ohio State University

      City of Columbus, Estados Unidos

    2. [2] Higher School of Economics, National Research University

      Higher School of Economics, National Research University

      Rusia

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 26, Nº. 3, 2020
  • Idioma: inglés
  • DOI: 10.1007/s00029-020-00562-w
  • Enlaces
  • Resumen
    • We prove that the generating function for the symmetric chromatic polynomial of all simple graphs is (after an appropriate scaling change of variables) a linear combination of one-part Schur polynomials. This statement immediately implies that it is also a τ-function of the Kadomtsev–Petviashvili integrable hierarchy of mathematical physics. Moreover, we describe a large family of polynomial graph invariants leading to the same τ-function. In particular, we introduce the Abel polynomial for graphs and show this for its generating function. The key point here is a Hopf algebra structure on the space spanned by graphs and the behavior of the invariants on its primitive space.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno