Ir al contenido

Documat


Topological and geometric aspects of almost Kähler manifolds via harmonic theory

  • Joana Ciric [1] ; Scott O. Wilson [2]
    1. [1] Universitat de Barcelona

      Universitat de Barcelona

      Barcelona, España

    2. [2] City University of New York

      City University of New York

      Estados Unidos

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 26, Nº. 3, 2020
  • Idioma: inglés
  • DOI: 10.1007/s00029-020-00568-4
  • Enlaces
  • Resumen
    • The well-known Kähler identities naturally extend to the non-integrable setting. This paper deduces several geometric and topological consequences of these extended identities for compact almost Kähler manifolds. Among these are identities of various Laplacians, generalized Hodge and Serre dualities, a generalized hard Lefschetz duality, and a Lefschetz decomposition, all on the space of d-harmonic forms of pure bidegree. There is also a generalization of Hodge Index Theorem for compact almost Kähler 4-manifolds. In particular, these provide topological bounds on the dimension of the space of d-harmonic forms of pure bidegree, as well as several new obstructions to the existence of a symplectic form compatible with a given almost complex structure.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno