Ir al contenido

Documat


The monodromy groups of lisse sheaves and overconvergent F-isocrystals

  • Marco D'Addezio [1]
    1. [1] Max Planck Institute for Mathematics

      Max Planck Institute for Mathematics

      Kreisfreie Stadt Bonn, Alemania

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 26, Nº. 3, 2020
  • Idioma: inglés
  • DOI: 10.1007/s00029-020-00569-3
  • Enlaces
  • Resumen
    • It has been proven by Serre, Larsen–Pink and Chin, that over a smooth curve over a finite field, the monodromy groups of compatible semi-simple pure lisse sheaves have “the same” π0 and neutral component. We generalize their results to compatible systems of semi-simple lisse sheaves and overconvergent F-isocrystals over arbitrary smooth varieties. For this purpose, we extend the theorem of Serre and Chin on Frobenius tori to overconvergent F-isocrystals. To put our results into perspective, we briefly survey recent developments of the theory of lisse sheaves and overconvergent F-isocrystals. We use the Tannakian formalism to make explicit the similarities between the two types of coefficient objects.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno