Ir al contenido

Documat


Deformation theory of the blown-up Seiberg–Witten equation in dimension three

  • Aleksander Doan [1] ; Thomas Walpuski [2]
    1. [1] Columbia University

      Columbia University

      Estados Unidos

    2. [2] Michigan State University

      Michigan State University

      City of East Lansing, Estados Unidos

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 26, Nº. 3, 2020
  • Idioma: inglés
  • DOI: 10.1007/s00029-020-00574-6
  • Enlaces
  • Resumen
    • Associated with every quaternionic representation of a compact, connected Lie group there is a Seiberg–Witten equation in dimension three. The moduli spaces of solutions to these equations are typically non-compact. We construct Kuranishi models around boundary points of a partially compactified moduli space. The Haydys correspondence identifies such boundary points with Fueter sections—solutions of a non-linear Dirac equation—of the bundle of hyperkähler quotients associated with the quaternionic representation. We discuss when such a Fueter section can be deformed to a solution of the Seiberg–Witten equation.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno