Ir al contenido

Documat


A New Five-Dimensional Hyperchaotic System with Six Coexisting Attractors

  • Autores: Jiaopeng Yang, Zhaosheng Feng, Zhenrong Liu
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 20, Nº 1, 2021
  • Idioma: inglés
  • DOI: 10.1007/s12346-021-00454-0
  • Enlaces
  • Resumen
    • This article presents a hyperchaotic system of five-dimensional autonomous ODEs that has five cross-product nonlinearities. Under certain parametric conditions, it exhibits three different types of hyperchaotic and chaotic systems which correspond to six hyperchaotic attractors with a non-hyperbolic equilibrium line, four chaotic attractors with seventeen hyperbolic equilibria, and four chaotic attractors with only one hyperbolic equilibrium, respectively. The fundamental dynamics are analyzed theoretically and numerically, such as the onset of hyperchaos and chaos, routes to chaos, persistence of chaos, coexistence of attractors, periodic windows and bifurcations. It is particularly shown that the coexisting attractors of the 5D system inside the hypercone are symmetric. Some dynamical characteristics of these attractors are illustrated.

  • Referencias bibliográficas
    • Boriga, R., Dascalescu, A., Priescu, I.: A new hyperchaotic map and its application in an image encryption scheme. Signal Process. Image Commun....
    • Chen, Y., Yang, Q.: A new Lorenz-type hyperchaotic system with a curve of equilibria. Math. Comput. Simul. 112, 40–55 (2015)
    • Daniel, W., Sergio, S., Roberto, B.: Coexistence and dynamical connections between hyperchaos and chaos in the 4D Rössler system: a computer-assisted...
    • Durey, M., Milewski, P.A., Bush, J.W.M.: Dynamics, emergent statistics, and the mean-pilot-wave potential of walking droplets. Chaos 28, 096108...
    • Ginoux, J.M., Llibre, J.: Canards existence in Memristor’s circuits. Qual. Theory Dyn. Syst. 15, 383–431 (2016)
    • Ginoux, J.M., Llibre, J., Tchizawa, K.: Canards existence in the Hindmarsh–Rose model. Math. Model. Nat. Phenom. 14, 1–21 (2019)
    • Gottwald, G., Melbourne, I.: A new test for chaos in deterministic systems. Proc. R. Soc. Lond. A 460, 603–611 (2004)
    • Gottwald, G., Melbourne, I.: On the implementation of the 0–1 test for chaos. SIAM J. Appl. Dyn. Syst. 8, 129–145 (2009)
    • Gottwald, G., Melbourne, I.: On the validity of the 0–1 test for chaos. Nonlinearity 22, 1367–1382 (2009)
    • Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)
    • Lü, J., Chen, G.: A new chaotic attractor coined. Int. J. Bifurc. Chaos 12, 659–661 (2002)
    • Marsden, J.E., Ross, S.E.: New methods in celestial mechanics and mission design. Bull. Am. Math. Soc. 43, 43–73 (2006)
    • Musielak, Z.E., Musielak, D.E.: High-dimensional chaos in dissipative and driven dynamical system. Int. J. Bifurc. Chaos 19, 2823–2869 (2008)
    • Ovsyannikov, I.I., Turaev, D.V.: Analytic proof of the existence of the Lorenz attractor in the extended Lorenz model. Nonlinearity 30, 115–137...
    • Pang, S.Q., Liu, Y.J.: A new hyperchaotic system from the Lü system and its control. J. Comput. Appl. Math. 235, 2775–2789 (2011)
    • Poincaré, H.: Sur le probleme des trois corps et les equations de la dynamique. Acta Math. 13, A3–A270 (1890)
    • Poincaré, H.: New Methods of Celestial Mechanics. History of Modern Physics and Astronomy, vol. 13. American Institute of Physics, College...
    • Rössler, O.E.: An equation for hyperchaos. Phys. Lett. A 71, 155–157 (1979)
    • Rössler, O.E.: An equation for continuous chaos. Ann. N. Y. Acad. Sci. 316, 376–392 (1979)
    • Shilnikov, L.P., Shilnikov, A.L., Turaev, D.V., Chua, L.O.: Methods of Qualitative Theory in Nonlinear Dynamics. World Scientific, Singapore...
    • Singh, J.P., Roy, B.K.: Five new 4-D autonomous conservative chaotic systems with various type of non-hyperbolic and lines of equilibria....
    • Smale, S.: Differentiable dynamical systems. Bull. Am. Math. Soc. 73, 747–817 (1967)
    • Smale, S.: Finding a horseshoe on the beaches of Rio. Math. Intell. 20, 39–44 (1998)
    • Sparrow, C.: The Lorenz Equations: Bifurcations Chaos and Strange Attractors, Applied Mathematical Sciences, vol. 41. Springer, New York (1982)
    • Sprott, J.C.: Some simple chaotic flows. Phys. Rev. E 50, 647–650 (1994)
    • Sprott, J.C.: Simplest dissipative chaotic flow. Phys. Lett. A 228, 271–274 (1997)
    • Starkov, K.E.: On the ultimate dynamics of the four-dimensional Rössler system. Int. J. Bifurc. Chaos 24, 1450149 (2014)
    • Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering. Westview Press, Boulder (2001)
    • Svetoslav, N., Sébastien, C.: Hyperchaos-chaos-hyperchaos transition in modified Rössler systems. Chaos Solit. Fract. 28, 252–263 (2006)
    • Volos, C., Maaita, J., Vaidyanathan, S., et al.: A novel four-dimensional hyperchaotic four-wing system with a saddle-focus equilibrium. IEEE...
    • Wei, Z., Moroz, I., Sprott, J.C., Akgul, A., Zhang, W.: Hidden hyperchaos and electronic circuit applibcation in a 5D self-exciting homopolar...
    • Wiggins, S., Mazel, D.S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. World Scientific, River Edge (2013)
    • Wu, X., Bai, C., Kan, H.: A new color image cryptosystem via hyperchaos synchronization. Commun. Nonlinear Sci. Numer. Simul. 19, 1884–1897...
    • Yang, Q., Zhang, K., Chen, G.: Hyperchaotic attractors from a linearly controlled Lorenz system. Nonlinear Anal. RWA 10, 1601–1617 (2009)
    • Zhang, S., Zeng, Y., Li, Z., Wang, M., Xiong, L.: Generating one to four-wing hidden attractors in a novel 4D no-equilibrium chaotic system...
    • Zhang, F., Zhang, G.: Further results on ultimate bound on the trajectories of the Lorenz system. Qual. Theory Dyn. Syst. 15, 221–235 (2016)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno