Ir al contenido

Documat


Characterization of the Existence of Non-trivial Limit Cycles for Generalized Abel Equations

  • Álvarez, M.J. [1] ; Bravo, J.L. [2] ; Fernández, M. [2] ; Prohens, R. [1]
    1. [1] Universitat de les Illes Balears

      Universitat de les Illes Balears

      Palma de Mallorca, España

    2. [2] Universidad de Extremadura

      Universidad de Extremadura

      Badajoz, España

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 20, Nº 1, 2021
  • Idioma: inglés
  • DOI: 10.1007/s12346-021-00450-4
  • Enlaces
  • Resumen
    • In this paper, we consider the family of generalized Abel equations of the form x = A(t)xm + B(t)xn, where A, B are trigonometric polynomials and m, n ∈ N. We characterize the existence of non-trivial limit cycles in this family, in terms of the trigonometric monomials.

  • Referencias bibliográficas
    • 1. Álvarez, A., Bravo, J.L., Fernández, M.: The number of limit cycles for generalized Abel equations with periodic coefficients of definite...
    • 2. Álvarez, A., Bravo, J.L., Fernández, M.: Limit cycles of Abel equations of the first kind. J. Math. Anal. Appl. 423(1), 734–745 (2015)
    • 3. Álvarez, M.J., Bravo, J.L., Fernández, M.: Uniqueness of limit cycles for polynomial first-order differential equations. J. Math. Anal....
    • 4. Álvarez, M.J., Bravo, J.L., Fernández, M.: Abel-like differential equations with a unique limit cycle. Nonlinear Anal. 74, 3694–3702 (2011)
    • 5. Álvarez, M.J., Bravo, J.L., Fernández, M.: Existence of non-trivial limit cycles in Abel equations with symmetries. Nonlinear Anal. 84,...
    • 6. Álvarez, M.J., Bravo, J.L., Fernández, M., Prohens, R.: Centers and limit cycles for a family of Abel equations. J. Math. Anal. Appl. 453,...
    • 7. Álvarez, M.J., Bravo, J.L., Fernández, M., Prohens, R.: Alien limit cycles in Abel equations. J. Math. Anal. Appl. 482(1), 123525 (2020)
    • 8. Álvarez, M.J., Gasull, A., Giacomini, H.: A new uniqueness criterion for the number of periodic orbits of Abel equations. J. Differ. Equ....
    • 9. Alwash, M.A.M.: Periodic solutions of Abel differential equations. J. Math. Anal. Appl. 329, 1161–1169 (2007)
    • 10. Alwash, M.A.M.: Periodic solutions of polynomial non-autonomous differential equations. Electron. J. Differ. Equ. 2005(84), 1–8 (2005)
    • 11. Benardete, D.M., Noonburg, V.W., Pollina, B.: Qualitative tools for studying periodic solutions and bifurcations as applied to the periodically...
    • 12. Bravo, J.L., Fernández, M.: Limit cycles of non-autonomous scalar ODEs with two summands. Commun. Pure Appl. Anal. 12–2, 1091–1102 (2013)
    • 13. Bravo, J.L., Fernández, M., Gasull, A.: Limit cycles for some Abel equations with coefficients without fixed signs. Int. J. Bifurc. Chaos...
    • 14. Bravo, J.L., Torregrosa, J.: Abel-like equations with no periodic solutions. J. Math. Anal. Appl. 342, 931–942 (2008)
    • 15. Briskin, M., Françoise, J.P., Yomdin, Y.: Center conditions II: parametric and model center problems. Isr. J. Math. 118, 61–82 (2000)
    • 16. Cherkas, L.A.: Number of limit cycles of an autonomous second-order system. Differ. Uravn. 12, 944–946 (1975)
    • 17. Gasull, A., Guillamon, A.: Limit cycles for generalized Abel equations. Int. J. Bifurc. Chaos 16, 3737–3745 (2006)
    • 18. Gasull, A., Llibre, J.: Limit cycles for a class of Abel equations. SIAM J. Math. Anal. 21–5, 1235–1244 (1990)
    • 19. Gasull, A., Prohens, R., Torregrosa, J.: Limit cycles for rigid cubic systems. J. Math. Anal. Appl. 303, 391–404 (2005)
    • 20. Gasull, A., Torregrosa, J.: Some results on rigid systems. In: International Conference on Differential Equations (Equadiff-2003), pp....
    • 21. Huang, J., Liang, H.: A uniqueness criterion of limit cycles for planar polynomial systems with homogeneous nonlinearities. J. Math. Anal....
    • 22. Huang, J., Liang, H.: A geometric criterion for equation x˙ = m i=0 ai(t)xi having at most m isolated periodic solutions. Preprint,...
    • 23. Huang, J., Liang, H.: Estimate for the number of limit cycles of Abel equation via a geometric criterion on three curves. Nonlinear Differ....
    • 24. Huang, J., Liang, H., Llibre, J.: Non-existence and uniqueness of limit cycles for planar polynomial differential systems with homogeneous...
    • 25. Huang, J., Zhao, Y.: Periodic solutions for equation x = A(t)xm + B(t)xn + C(t)xl with A(t) and B(t) changing signs. J. Differ....
    • 26. Lloyd, N.G.: A note on the number of limit cycles in certain two-dimensional systems. J. Lond. Math. Soc. 20, 277–286 (1979)
    • 27. Lins-Neto, A.: On the number of solutions of the equation dx dt = n j=0 a j(t)x j , 0 ≤ t ≤ 1, for which x(0) = x(1). Inv....
    • 28. Panov, A.A.: The number of periodic solutions of polynomial differential equations. Math. Notes 64–5, 622–628 (1998)
    • 29. Pliss, V.A.: Non Local Problems of the Theory of Oscillations. Academic Press, New York (1966)
    • 30. Smale, S.: Mathematical problems for the next century. Math. Intell. 20, 7–15 (1998)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno