Ir al contenido

Documat


Analysis and numerical methods for the Riesz space distributed-order advection-diffusion equation with time delay

  • Mohammad Javidi [1] ; Mahdi Saedshoar Heris [1]
    1. [1] La Universidad de Tabriz
  • Localización: SeMA Journal: Boletín de la Sociedad Española de Matemática Aplicada, ISSN-e 2254-3902, ISSN 2254-3902, Vol. 76, Nº. 4, 2019, págs. 533-551
  • Idioma: inglés
  • DOI: 10.1007/s40324-019-00192-z
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this paper, we investigate the fractional backward differential formulas (FBDF) and Grünwald difference method for the Riesz space distributed-order advection-diffusion equation with delay. The midpoint quadrature rule is used to approximate the distributed-order equation by a multi-term fractional form. Next the transformed multi-term fractional equation is solved by discretizing in space by the fractional backward differential formulas method for 0<α<1 and the shifted Grünwald difference operators for 1<β<2 to approximate the Riesz space fractional derivative and in time by using the Crank-Nicolson scheme. We prove that the Crank-Nicolson scheme is conditionally stable and convergent with second-order accuracy O(h2+κ2+σ2+ρ2). Finally, we give some examples and compare the results of our method with two works. This results show the effectiveness of the proposed numerical method.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno