Ir al contenido

Documat


Towards computable flows and robust estimates for inf-sup stable FEM applied to the time-dependent incompressible Navier–Stokes equations

  • Philipp W. Schroeder [1] ; Christoph Lehrenfeld [1] ; Gert Lube [1] Árbol académico ; Alexander Linke [2]
    1. [1] Universidad de Gotinga
    2. [2] Instituto Weierstrass
  • Localización: SeMA Journal: Boletín de la Sociedad Española de Matemática Aplicada, ISSN-e 2254-3902, ISSN 2254-3902, Vol. 75, Nº. Extra 4, 2018 (Ejemplar dedicado a: Variational Multiscale Methods), págs. 629-653
  • Idioma: inglés
  • DOI: 10.1007/s40324-018-0157-1
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Inf-sup stable FEM applied to time-dependent incompressible Navier–Stokes flows are considered. The focus lies on robust estimates for the kinetic and dissipation energies in a twofold sense. Firstly, pressure–robustness ensures the fulfilment of a fundamental invariance principle and velocity error estimates are not corrupted by the pressure approximability. Secondly, Re-semi-robustness means that constants appearing on the right-hand side of kinetic and dissipation energy error estimates (including Gronwall constants) do not explicitly depend on the Reynolds number. Such estimates rely on the essential regularity assumption ∇u∈L1(0,T;L∞(Ω)) which is discussed in detail. In the sense of best practice, we review and establish pressure- and Re-semi-robust estimates for pointwise divergence-free H1-conforming FEM (like Scott–Vogelius pairs or certain isogeometric based FEM) and pointwise divergence-free H(div)-conforming discontinuous Galerkin FEM. For convection-dominated problems, the latter naturally includes an upwind stabilisation for the velocity which is not gradient-based.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno