Ir al contenido

Documat


Ideal spaces

  • Mitra, Biswajit [1] ; Chowdhury, Debojyoti [1]
    1. [1] University of Burdwan
  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 22, Nº. 1, 2021, págs. 79-89
  • Idioma: inglés
  • DOI: 10.4995/agt.2021.13608
  • Enlaces
  • Resumen
    • Let C∞ (X) denote the family of real-valued continuous functions which vanish at infinity in the sense that {x ∈ X : |f(x)| ≥ 1/n} is compact in X for all n ∈ N. It is not in general true that C∞ (X) is an ideal of C(X). We define those spaces X to be ideal space where C∞ (X) is an ideal of C(X). We have proved that nearly pseudocompact spaces are ideal spaces. For the converse, we introduced a property called “RCC” property and showed that an ideal space X is nearly pseudocompact if and only if X satisfies ”RCC” property. We further discussed some topological properties of ideal spaces.

  • Referencias bibliográficas
    • F. Azarpanah, M. Ghirati and A. Taherifar, Closed ideals in C(X) with different representations, Houst. J. Math. 44, no. 1 (2018), 363-383.
    • F. Azarpanah and T. Soundarajan, When the family of functions vanishing at infinity is an ideal of C(X), Rocky Mountain J. Math. 31, no. 4...
    • R. L. Blair and M. A. Swardson, Spaces with an Oz Stone-Cech compactification, Topology Appl. 36 (1990), 73-92. https://doi.org/10.1016/0166-8641(90)90037-3
    • W. W. Comfort, On the Hewitt realcompactification of a product space, Trans. Amer. Math. Soc. 131 (1968), 107-118. https://doi.org/10.1090/S0002-9947-1968-0222846-1
    • J. M. Domínguez, J. Gómez and M. A. Mulero , Intermediate algebras between C*(X) and C(X) as rings of fractions of C*(X), Topology Appl. 77...
    • R. Engelking, General Topology, Heldermann Verlag, Berlin , 1989
    • L. Gillman and M. Jerison, Rings of Continuous Functions, University Series in Higher Math, Van Nostrand, Princeton, New Jersey,1960. https://doi.org/10.1007/978-1-4615-7819-2
    • I. Glicksberg, Stone-Cech compactifications of products, Trans. Amer. Math. Soc. 90 (1959), 369-382. https://doi.org/10.2307/1993177
    • M. Henriksen, B. Mitra, C(X) can sometimes determine X without X being realcompact, Comment. Math. Univ. Carolina 46, no. 4 (2005), 711-720.
    • M. Henriksen and M. Rayburn, On nearly pseudocompact spaces, Topology Appl. 11 (1980),161-172. https://doi.org/10.1016/0166-8641(80)90005-X
    • T. Isiwata, On locally Q-complete spaces, II, Proc. Japan Acad. 35, no. 6 (1956), 263-267. https://doi.org/10.3792/pja/1195524322
    • B. Mitra and S. K. Acharyya, Characterizations of nearly pseudocompact spaces and spaces alike, Topology Proceedings 29, no. 2 (2005), 577-594.
    • M. C. Rayburn, On hard sets, General Topology and its Applications 6 (1976), 21-26. https://doi.org/10.1016/0016-660X(76)90004-0
    • A. Rezaei Aliabad, F. Azarpanah and M. Namdari, Rings of continuous functions vanishing at infinity, Comm. Math. Univ. Carolinae 45, no. 3...
    • A. H. Stone, Hereditarily compact spaces, Amer. J. Math. 82 (1960), 900-914. https://doi.org/10.2307/2372948
    • A. Wood Hager, On the tensor product of function rings, Doctoral dissertation, Pennsylvania State Univ., University Park, 1965.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno