Ir al contenido

Documat


Remarks on the rings of functions which have a finite numb er of di scontinuities

  • Ahmadi Zand, Mohammad Reza [1] ; Khosravi, Zahra [1]
    1. [1] Yazd University
  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 22, Nº. 1, 2021, págs. 139-147
  • Idioma: inglés
  • DOI: 10.4995/agt.2021.14332
  • Enlaces
  • Resumen
    • Let X be an arbitrary topological space. F(X) denotes the set of all real-valued functions on X and C(X)F denotes the set of all f ∈ F(X) such that f is discontinuous at most on a finite set. It is proved that if r is a positive real number, then for any f ∈ C(X)F which is not a unit of C(X)F there exists g ∈ C(X)F such that g ≠ 1 and f = gr f. We show that every member of C(X)F is continuous on a dense open subset of X if and only if every non-isolated point of X is nowhere dense. It is shown that C(X)F is an Artinian ring if and only if the space X is finite. We also provide examples to illustrate the results presented herein.

  • Referencias bibliográficas

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno