The Menger and the almost Menger properties are extended to locales. Regarding the former, the extension is conservative (meaning that a space is Menger if and only if it is Menger as a locale), and the latter is conservative for sober TD-spaces. Non-spatial Menger (and hence almost Menger) locales do exist, so that the extensions genuinely transcend the topological notions. We also consider projectively Menger locales, and show that, as in spaces, a locale is Menger precisely when it is Lindelöf and projectively Menger. Transference of these properties along localic maps (via direct image or pullback) is considered.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados