Ir al contenido

Documat


On the Menger and almost Menger properties in locales

  • Bayih, Tilahun [1] ; Dube, Themba [1] ; Ighedo, Oghenetega [1]
    1. [1] University of South Africa
  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 22, Nº. 1, 2021, págs. 199-221
  • Idioma: inglés
  • DOI: 10.4995/agt.2021.14915
  • Enlaces
  • Resumen
    • The Menger and the almost Menger properties are extended to locales. Regarding the former, the extension is conservative (meaning that a space is Menger if and only if it is Menger as a locale), and the latter is conservative for sober TD-spaces. Non-spatial Menger (and hence almost Menger) locales do exist, so that the extensions genuinely transcend the topological notions. We also consider projectively Menger locales, and show that, as in spaces, a locale is Menger precisely when it is Lindelöf and projectively Menger. Transference of these properties along localic maps (via direct image or pullback) is considered.

  • Referencias bibliográficas
    • R. N. Ball and J. Walters-Wayland, C- and C*-quotients in pointfree topology, Dissert. Math. (Rozprawy Mat.) 412 (2002), 1-62. https://doi.org/10.4064/dm412-0-1
    • B. Banaschewski and C. Gilmour, Pseudocompactness and the cozero part of a frame, Comment. Math. Univ. Carolin. 37 (1996), 579-589
    • B. Banaschewski and A. Pultr, Variants of openness, Appl. Categ. Structures 2 (1994), 331-350. https://doi.org/10.1007/BF00873038
    • M. Bonanzinga, F. Cammaroto and M. Matveev, Projective versions of selection principles, Topology Appl. 157 (2010), 874-893. https://doi.org/10.1016/j.topol.2009.12.004
    • C. H. Dowker and D. Strauss, Paracompact frames and closed maps, in: Symposia Mathematica, Vol. XVI, pp. 93-116 (Convegno sulla Topologia...
    • C. H. Dowker and D. Strauss, Sums in the category of frames, Houston J. Math. 3 (1976), 17-32.
    • T. Dube, M. M. Mugochi and I. Naidoo, Cech completeness in pointfree topology, Quaest. Math. 37 (2014), 49-65. https://doi.org/10.2989/16073606.2013.779986
    • T. Dube, I. Naidoo and C. N. Ncube, Isocompactness in the category of locales, Appl. Categ. Structures 22 (2014), 727-739. https://doi.org/10.1007/s10485-013-9341-8
    • M. J. Ferreira, J. Picado and S. M. Pinto, Remainders in pointfree topology, Topology Appl. 245 (2018), 21-45. https://doi.org/10.1016/j.topol.2018.06.007
    • J. Gutiérrez García, I. Mozo Carollo and J. Picado, Normal semicontinuity and the Dedekind completion of pointfree function rings, Algebra...
    • W. He and M. Luo, Completely regular proper reflection of locales over a given locale, Proc. Amer. Math. Soc. 141 (2013), 403-408. https://doi.org/10.1090/S0002-9939-2012-11329-2
    • P. T. Johnstone, Stone Spaces, Cambridge University Press, Cambridge, 1982.
    • D. Kocev, Menger-type covering properties of topological spaces, Filomat 29 (2015), 99-106. https://doi.org/10.2298/FIL1501099K
    • J. Madden and J. Vermeer, Lindelöf locales and realcompactness, Math. Proc. Camb. Phil. Soc. 99 (1986), 473-480. https://doi.org/10.1017/S0305004100064410
    • J. Picado and A. Pultr, Frames and Locales: topology without points, Frontiers in Mathematics, Springer, Basel, 2012. https://doi.org/10.1007/978-3-0348-0154-6
    • J. Picado and A. Pultr, Axiom $T_D$ and the Simmons sublocale theorem, Comment. Math. Univ. Carolin. 60 (2019), 701-715.
    • J. Picado and A. Pultr, Notes on point-free topology, manuscript.
    • T. Plewe, Sublocale lattices, J. Pure Appl. Algebra 168 (2002), 309-326. https://doi.org/10.1016/S0022-4049(01)00100-1
    • V. Pták, Completeness and the open mapping theorem, Bull. Soc. Math. France 86 (1958), 41-74. https://doi.org/10.24033/bsmf.1498
    • Y.-K. Song, Some remarks on almost Menger spaces and weakly Menger spaces, Publ. Inst. Math. (Beograd) (N.S.) 112 (2015), 193-198. https://doi.org/10.2298/PIM150513031S
    • J. J. C. Vermeulen, Proper maps of locales, J. Pure Appl. Algebra 92 (1994), 79-107. https://doi.org/10.1016/0022-4049(94)90047-7

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno