Celso Marques da Silva Jr., Renata R. Del Vecchio, Bruno B. Monteiro
In this work a new centrality measure of graphs is presented, based on the principal eigenvector of the distance matrix: spectral closeness. Using spectral graph theory, we show some of its properties and we compare the results of this new centrality with closeness centrality. In particular, we prove that for threshold graphs these two centralities always coincide. In addition we construct an infinity family of graphs for which these centralities never coincide.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados