Ir al contenido

Documat


Some trapezoid and midpoint type inequalities for newly defined quantum integrals

  • Budak, Hüseyin [1]
    1. [1] Duzce University

      Duzce University

      Turquía

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 40, Nº. 1, 2021, págs. 199-215
  • Idioma: inglés
  • DOI: 10.22199/issn.0717-6279-2021-01-0013
  • Enlaces
  • Resumen
    • In this paper, we first obtain prove two new identities for the quantum integrals. Then we establish Trapezoid and Midpoint type inequalities for quantum integrals defined by Bermudo et al. in [3]. The inequalities in this study generalize some results obtained in earlier works.

  • Referencias bibliográficas
    • N. Alp, M. Z. Sarikaya, M. Kunt and I. Işcan, “q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex...
    • N. Alp and M. Z. Sarikaya, “Hermite Hadamard’s type inequalities for co-ordinated convex functions on quantum integral”, Preprint, Dec. 2018....
    • S. Bermudo, P. Kórus, and J. Nápoles. Valdés, “On q–Hermite-Hadamard inequalities for general convex functions”, Acta mathematica hungarica,...
    • S. S. Dragomir and C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications. Melbourne: RGMIA Monographs, Victoria...
    • S. S. Dragomir and R. P. Agarwal, “Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal...
    • T. Ernst, The history of q-calculus and new method. Uppsala: Uppsala University, 2000. [On line]. Available: https://bit.ly/2LQkdK5
    • T. Ernst, A comprehensive treatment of q-calculus. Basel: Birkhäuser, 2012, doi: 10.1007/978-3-0348-0431-8
    • F. H. Jackson, “On a q-definite integrals”, The quarterly journal pure applications mathematics, vol. 41, pp. 193-203, 1910. [On line]. Available:...
    • V. Kac and P. Cheung, Quantum calculus. New York, NY: Springer, 2002, doi: 10.1007/978-1-4613-0071-7
    • U. S. Kirmaci, “Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula”, Applied...
    • M. A. Noor, K. I. Noor, and M. U. Awan, “Some quantum estimates for Hermite-Hadamard inequalities”, Applications mathematics computation,...
    • M. A. Noor, K. I. Noor, and M. U. Awan, “Some quantum integral inequalities via preinvex functions”, Applications mathematics computation,...
    • M. Noor, K. Noor, and M. Awan, “Quantum Ostrowski inequalities for q-differentiable convex functions”, Journal of mathematical inequalities,...
    • J. E. Pĕcarić, F. Proschan, and Y. L. Tong, Convex functions, partial orderings and statistical applications. Boston, MA: Academic Press,...
    • W. Sudsutad, S. K. Ntouyas, and J. Tariboon, “Quantum integral inequalities for convex functions”, Journal mathematics inequalities, vol....
    • J. Tariboon and S. K. Ntouyas, “Quantum calculus on finite intervals and applications to impulsive difference equations”, Advances difference...
    • H. Zhuang, W. Liu, J. Park, “Some quantum estimates of Hermite-Hadmard inequalities for quasi-convex functions”, Mathematics, vol. 7, no.2,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno