Ir al contenido

Documat


Some hyperstability results of a p-radical functional equation related to Drygas mappings in non-Archimedean Banach spaces

  • Esseghyr Hryrou, Mostapha [1] ; Nuino, Ahmed [1] ; Kabbaj, Samir [1]
    1. [1] Université Ibn-Tofail

      Université Ibn-Tofail

      Kenitra, Marruecos

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 40, Nº. 1, 2021, págs. 153-174
  • Idioma: inglés
  • DOI: 10.22199/issn.0717-6279-2021-01-0010
  • Enlaces
  • Resumen
    • The aim of this paper is to introduce and solve the following p-radical functional equation related to Drygas mappings   f is a mapping from R into a vector space X and p ≥ 3 is an odd natural number. Using an analogue version of Brzdȩk’sfixed point theorem [12], we establish some hyperstability results for the considered equation in non-Archimedean Banach spaces. Also, we give some hyperstability results for the inhomogeneous p-radical functional equation related to Drygas mappings

  • Referencias bibliográficas
    • L. Aiemsomboon and W. Sintunavarat, “On a new type of stability of a radical quadratic functional equation using Brzdȩk’s fixed point theorem”,...
    • L. Aiemsomboon and W. Sintunavarat, “On generalized hyperstability of a general linear equation”, Acta mathematica hungarica, vol. 149, no....
    • C. Alabiso and I. Weiss, A primer on Hilbert space theory: linear spaces, topological spaces, metric spaces, normed spaces, and topological...
    • Z. Alizadeh and A. G. Ghazanfari, “On the stability of a radical cubic functional equation in quasi-β-spaces,” Journal of fixed point theory...
    • M. Almahalebi, A. Charifi and S. Kabbaj, “Hyperstability of a Cauchy functional equation”, Journal of nonlinear analysis and optimization:...
    • M. Almahalebi, “On the hyperstability of σ-Drygas functional equation on semigroups”, Aequationes mathematicae, vol. 90, no. 4, pp. 849-857,...
    • M. Almahalebi and C. Park, “On the hyperstability of a functional equation in commutative groups”, Journal of computational analysis applications,...
    • T. Aoki, “On the stability of the linear transformation in Banach spaces”, Journal of the Mathematical Society of Japan, vol. 2, no. 1-2,...
    • D. G. Bourgin, “Classes of transformations and bordering transformations”, Bulletin of the American mathematical society, vol. 57, no. 4,...
    • N. Brillouët-Belluot, J. Brzdęk, and K. Ciepliński, “On some recent developments in Ulams type stability”, Abstract and applied analysis,...
    • J. Brzdȩk, “A note on stability of additive mappings”, in Stability of mappings of Hyers-Ulam type, T. M. Rassias and J. Tabor, Eds. Palm...
    • J. Brzdȩk, J. Chudziak, and Z. Páles, “A fixed point approach to stability of functional equations”, Nonlinear analysis: theory, methods &...
    • J. Brzdȩk and K. Ciepliński, “A fixed point approach to the stability of functional equations in non-Archimedean metric spaces”, Nonlinear...
    • J. Brzdęk, “Stability of additivity and fixed point methods”, Fixed point theory and applications, vol. 2013, no. 1, Art ID. 285, Nov. 2013,...
    • J. Brzdȩk “Hyperstability of the Cauchy equation on restricted domains,” Acta mathematica hungarica, vol. 141, no. 1-2, pp. 58–67, Feb. 2013,...
    • J. Brzdęk, L. Cădariu, and K. Ciepliński, “Fixed point theory and the Ulam stability”, Journal of function spaces, vol. 2014, Art ID. 829419,...
    • J. Brzdęk, W. Fechner, M. S. Moslehian, and J. Sikorska, “Recent developments of the conditional stability of the homomorphism equation”,...
    • J. Brzdęk, “Remarks on solutions to the functional equations of the radical type”, Advances in the theory of nonlinear analysis and its application,...
    • H. Drygas, “Quasi-inner products and their applications”, in Advances in multivariate statistical analysis, A. K. Gupta, Ed. Dordrecht: Springer,...
    • B. R. Ebanks, P. L. Kannappan, and P. K. Sahoo, “A common generalization of functional equations characterizing normed and quasi-inner-product...
    • M. E. Gordji, H. Khodaei, A. Ebadian, and G. H. Kim, “Nearly radical quadratic functional equations in p-2-normed spaces”, Abstract and applied...
    • M. E. Gordji and M. Parviz, “On the Hyers Ulam stability of the functional equation”, Nonlinear functions analysis applications, vol. 14,...
    • P. Găvruta, “A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings”, Journal mathematics analysis applications,...
    • D. H. Hyers, “On the stability of the linear functional equation”, Proceedings of the National Academy of Sciences of the United States of...
    • S.-M. Jung, and P. K. Sahoo, “Stability of a functional equation of Drygas”, Aequationes mathematicae, vol. 64, no. 3, pp. 263-273, Dec. 2002,...
    • H. Khodaei, M. E. Gordji, S. Kim, and Y. Cho, “Approximation of radical functional equations related to quadratic and quartic mappings”, Journal...
    • S. Kim, Y. Cho, and M. E. Gordji, “On the generalized Hyers-Ulam-Rassias stability problem of radical functional equations”, Journal of inequalities...
    • G. Maksa and Z. Pales, “Hyperstability of a class of linear functional equations”, Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis,...
    • M. Piszczek and J. Szczawińska, “Hyperstability of the Drygas functional equation”, Journal function spaces and applied, vol. 2013, Art ID...
    • University of Cracow and AGH University of Science and Technology “16th International Conference on Functional Equations and Inequalities,...
    • Th. M. Rassias, “On the stability of the linear mapping in Banach spaces”, Proceedings of the American mathematical society, vol. 72, pp....
    • Th. M. Rassias, “Problem 16, 2°. The Twenty-seventh International Symposium on Functional Equations, August 14–24, 1989, Bielsko-BiałKatowice—Kraków,...
    • Th. M. Rassias, “On a modified Hyers-Ulam sequence”, Journal of mathematical analysis and applications, vol. 158, no. 1, pp. 106-113, Jun....
    • P. K. Sahoo and P. Kannappan, Introduction to functional equations. Boca Raton, FL: CRC Press, 2011.
    • M. Sirouni and S. Kabbaj, “A fixed point approach to the hyperstability of Drygas functional equation in metric spaces”, Journal of mathematical...
    • W. Smajdor, “On set-valued solutions of a functional equation of Drygas”, Aequationes mathematicae, vol. 77, pp. 89-97, Mar. 2009, doi: 10.1007/s00010-008-2935-9
    • S. M. Ulam, Problems in modern mathematics. New York, NY: J. Wiley, 1964.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno