Ir al contenido

Documat


A system of nonlinear fractional BVPs with ϕ-Laplacian operators and nonlocal conditions

  • Temar, Bahia [1] ; Saifi, Ouiza [1] ; Djebali, Smail [1]
    1. [1] Ecole Normale Supérieure Cheikh Mohamed El-Bachir El-Ibrahimi
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 40, Nº. 2, 2021, págs. 447-479
  • Idioma: inglés
  • DOI: 10.22199/issn.0717-6279-2021-02-0027
  • Enlaces
  • Resumen
    • This work investigates the existence of multiple positive solutions for a system of two nonlinear higher-order fractional differential equations with ϕ-Laplacian operators and nonlocal conditions. A degenerate nonlinearity which obeys some general growth conditions is considered. The singularities are dealt with by approximating the fixed point operator. New existence results are presented by using the fixed point index theory. Examples of applications illustrate the theoretical results.

  • Referencias bibliográficas
    • R. P. Agarwal, M. Meehan, and D. O’Regan, Fixed point theory and applications. Cambridge: Cambridge University Press, 2009, doi: 10.1017/CBO9780511543005
    • C. Cordeanu, Integral equations and stability of feedback systems. New York, NY: Academic Press, 1973.
    • K. Deimling, Nonlinear Functional Analysis. Berlin: Springer, 1985, doi: 10.1007/978-3-662-00547-7
    • S. Djebali and O. Saifi, “Positive solutions for singular ϕ−Laplacian BVPs on the positive half-line”, Electronic journal of qualitative theory...
    • S. Djebali and O. Saifi, “Multiple positive solutions for singular ϕ -Laplacian BVPs with derivative depending nonlinearity on R+”, Dynamic...
    • X. Hao, H. Wang, L. Liu, and Y. Cui, “Positive solutions for a system of nonlinear fractional nonlocal boundary value problems with parameters...
    • A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential equations. Amsterdam: Elsevier, 2006.
    • R. L. Magin, Fractional calculus in bioengineering. Redding, CT: Begell, 2006.
    • I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of...
    • J. Sabatier, O. P. Agrawal, and J. A. Tenreiro Machado, Advances in fractional calculus: theoretical developments and applications in physics...
    • S. G. Samko, O. I. Marichev, and A. A. Kilbas, Fractional integrals and derivatives: theory and applications. Yverdon: Gordon and Breach,...
    • J.F. Xu, and W. Dong, “Existence and uniqueness of positive solutions of a fractional boundary value problem with p-Laplacian operator”, Acta...
    • F. Yan, M. Zuo, and X. Hao, “Positive solution for a fractional singular boundary value problem with p-Laplacian operator,” Boundary value...
    • G. M. Zaslavsky, Hamiltonian chaos and fractional dynamics. Oxford: Oxford University Press, 2008.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno