Ir al contenido

Documat


On r- Dynamic coloring of the gear graph families

  • Deepa, T. [1] ; Venkatachalam, M. [1] ; Dafik, D. [2]
    1. [1] Kongunadu Arts and Science College (Autonomous).
    2. [2] University of Jember.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 40, Nº. 1, 2021, págs. 1-15
  • Idioma: inglés
  • DOI: 10.22199/issn.0717-6279-2021-01-0001
  • Enlaces
  • Resumen
    • An r-dynamic coloring of a graph G is a proper coloring c of the vertices such that |c(N(v))| ≥ min {r, d(v)}, for each v ∈ V (G). The r-dynamic chromatic number of a graph G is the minimum k such that G has an r-dynamic coloring with k colors. In this paper, we obtain the r−dynamic chromatic number of the middle, central and line graphs of the gear graph.

  • Referencias bibliográficas
    • A. Ahadi, S. Akbari, A. Dehghan, and M. Ghanbari, “On the difference between chromatic number and dynamic chromatic number of graphs”, Discrete...
    • S. Akbari, M. Ghanbari, and S. Jahanbakam, “On the dynamic chromatic number of graphs,” in Combinatorics and Graphs, vol. 531, R. A. Brualdi,...
    • S. Akbari, M. Ghanbari, and S. Jahanbekam, “On the list dynamic coloring of graphs”, Discrete applied mathematics, vol. 157, no. 14, pp. 3005–3007,...
    • M. Alishahi, “Dynamic chromatic number of regular graphs”, Discrete applied mathematics, vol. 160, no. 15, pp. 2098–2103, Oct. 2012, doi:...
    • J. A. Bondy and U. S. R. Murty, Graph theory. New York, NY: Springer, 2008.
    • D. Michalak, “On middle and total graphs with coarseness number equal 1”, in Graph theory , vol. 1018, M. Borowiecki , J. W. Kennedy, and...
    • A. Dehghan and A. Ahadi, “Upper bounds for the 2-hued chromatic number of graphs in terms of the independence number”, Discrete applied mathematics,...
    • H. J. Lai, B. Montgomery, and H. Poon, “Upper bounds of dynamic chromatic number”, Ars combinatoria, vol. 68, pp. 193-201, Jul. 2003. [On...
    • X. Li and W. Zhou, “The 2nd-order conditional 3-coloring of claw-free graphs”, Theoretical computer sciences, vol. 396, no. 1-3, pp. 151-157,...
    • X. Li, X. Yao, W. Zhou, and H. Broersma, “Complexity of conditional colorability of graphs”, Applied mathematical letters, vol. 22, no. 3,...
    • N. Mohanapriya, J. Vernold Vivin and M. Venkatachalam, “δ- dynamic chromatic number of Helm graph families”, Cogent mathematics, vol. 3, Art....
    • N. Mohanapriya, J. Vernold Vivin, and M. Venkatachalam, “On dynamic coloring of Fan graphs”, International journal of pure applied matematics,...
    • N. Mohanapriya, "A study on dynamic coloring of graphs", Ph. D. Thesis, Bharathiar University, Coimbatore, India, 2017.
    • B. Montgomery, “Dynamic coloring of graphs”, Ph. D. Thesis, West Virginia University, 2001, doi: 10.33915/etd.1397
    • A. Taherkhani, “On r-Dynamic chromatic number of graphs”, Discrete applied mathematics, vol. 201, pp. 222-227, Mar. 2016, doi: 10.1016/j.dam.2015.07.019
    • J. Vernold Vivin, “Harmonious coloring of total graphs, n−leaf, central graphs and circumdetic graphs”, Ph. D. Thesis, Bharathiar University,...
    • A. T. White, Graphs, groups and surfaces. Amsterdam: North-Holland, 1973.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno