Ir al contenido

Documat


On Erdős–de Bruijn–Kingman’s problem on regularity of reciprocals for exponential series

  • Alexander Gomilko [1] ; Yuri Tomilov [2] Árbol académico
    1. [1] Nicolaus Copernicus University

      Nicolaus Copernicus University

      Toruń, Polonia

    2. [2] Polish Academy of Sciences

      Polish Academy of Sciences

      Warszawa, Polonia

  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 37, Nº 3, 2021, págs. 1045-1081
  • Idioma: inglés
  • DOI: 10.4171/rmi/1220
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Motivated by applications to renewal theory, Erdős, de Bruijn and Kingman posed a problem on boundedness of reciprocals (1−z)/(1−F(z)) in the unit disc for probability generating functions F(z). This problem was solved by Ibragimov in 1975 by constructing a counterexample. In this paper, we provide much stronger counterexamples showing that the problem does not allow for a positive answer even under rather restrictive additional assumptions. Moreover, we pursue a systematic study of Lp-integrabilty properties for the reciprocals. In particular, we show that while the boundedness of (1−z)/(1−F(z)) fails in general, the reciprocals do possess certain Lp-integrability properties under mild conditions on F. We also study the same circle of problems in the continuous-time setting.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno