Ir al contenido

Documat


Definable coaisles over rings of weak global dimension at most one

  • Autores: Silvana Bazzoni Árbol académico, Michal Hrbek
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 65, Nº 1, 2021, págs. 165-241
  • Idioma: inglés
  • DOI: 10.5565/publicacionsmatematiques.v65i1.383692
  • Enlaces
  • Resumen
    • In the setting of the unbounded derived category D(R) of a ring R of weak global dimension at most one we consider t-structures with a definable coaisle. The t-structures among these which are stable (that is, the t-structures which consist of a pair of triangulated subcategories) are precisely the ones associated to a smashing localization of the derived category. In this way, our present results generalize those of [8] to the non-stable case. As in the stable case [8], we confine for the most part to the commutative setting, and give a full classification of definable coaisles in the local case, that is, over valuation domains. It turns out that, unlike in the stable case of smashing subcategories, the definable coaisles do not always arise from homological ring epimorphisms. We also consider a non-stable version of the Telescope Conjecture for t-structures and give a ring-theoretic characterization of the commutative rings of weak global dimension at most one for which it is satisfied.

  • Referencias bibliográficas
    • L. Alonso Tarr´ıo, A. Jeremías Lopez, and M. Saorín, Compactly generated t-structures on the derived category of a Noetherian ring, J. Algebra...
    • L. Angeleri Hugel and M. Hrbek , Parametrizing torsion pairs in derived categories, Preprint (2019). arXiv:1910.11589.
    • L. Angeleri Hugel, F. Marks, and J. Vitória , Silting modules, Int. Math. Res. Not. IMRN 2016(4) (2016), 1251–1284. DOI: 10.1093/imrn/rnv191.
    • L. Angeleri Hugel, F. Marks, and J. Vitória, Torsion pairs in silting theory, Pacific J. Math. 291(2) (2017), 257–278. DOI: 10.2140/pjm.2017.291.257.
    • L. Angeleri Hugel, D. Pospisil, J. Stovıcek, and J. Trlifaj, Tilting, cotilting, and spectra of commutative Noetherian rings, Trans. Amer....
    • S. Bazzoni, Cotilting and tilting modules over Prufer domains, Forum Math. 19(6) (2007), 1005–1027. DOI: 10.1515/FORUM.2007.039.
    • S. Bazzoni, Cotilting modules and homological ring epimorphisms, J. Algebra 441 (2015), 552–581. DOI: 10.1016/j.jalgebra.2015.07.008.
    • S. Bazzoni and J. Stovıcek , Smashing localizations of rings of weak global dimension at most one, Adv. Math. 305 (2017), 351–401. DOI: 10.1016/j.aim....
    • A. A. Beilinson, J. Bernstein, and P. Deligne, “Analyse et topologie sur les espaces singuliers (I). Faisceaux pervers” (Luminy, 1981), Ast´erisque...
    • S. Breaz and F. Pop, Cosilting modules, Algebr. Represent. Theory 20(5) (2017), 1305–1321. DOI: 10.1007/s10468-017-9688-x. [11] S. Breaz and...
    • H. Cartan and S. Eilenberg, “Homological Algebra”, With an appendix by David A. Buchsbaum, Reprint of the 1956 original, Princeton Landmarks...
    • F. Couchot, Valuation domains with a maximal immediate extension of finite rank, J. Algebra 323(1) (2010), 32–41. DOI: 10.1016/j.jalgebra.2009.08.023.
    • L. Fuchs and L. Salce, “Modules over Non-Noetherian Domains”, Mathematical Surveys and Monographs 84, American Mathematical Society, Providence,...
    • G. Garkusha and M. Prest, Triangulated categories and the Ziegler spectrum, Algebr. Represent. Theory 8(4) (2005), 499–523. DOI: 10.1007/s10468-005-...
    • S. Glaz, “Commutative Coherent Rings”, Lecture Notes in Mathematics 1371, Springer-Verlag, Berlin, 1989. DOI: 10.1007/BFb0084570.
    • R. Gobel and S. Shelah , Semi-rigid classes of cotorsion-free abelian groups, J. Algebra 93(1) (1985), 136–150. DOI: 10.1016/0021-8693(85)90178-4.
    • R. Gobel and J. Trlifaj, “Approximations and Endomorphism Algebras of Modules”, Volume 1. Approximations. Volume 2. Predictions, Second revised...
    • M. Groth, Derivators, pointed derivators and stable derivators, Algebr. Geom. Topol. 13(1) (2013), 313–374. DOI: 10.2140/agt.2013.13.313.
    • D. Happel, I. Reiten, and S. O. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 120(575) (1996), 88 pp....
    • M. Hrbek, One-tilting classes and modules over commutative rings, J. Algebra 462 (2016), 1–22. DOI: 10.1016/j.jalgebra.2016.05.014.
    • M. Hrbek, Compactly generated t-structures in the derived category of a commutative ring, Math. Z. 295(1–2) (2020), 47–72. DOI: 10.1007/s00209-019-...
    • M. Hrbek and T. Nakamura, Telescope conjecture for homotopically smashing t-structures over commutative noetherian rings, J. Pure Appl. Algebra...
    • M. Hrbek and J. Stovıcek , Tilting classes over commutative rings, Forum Math. 32(1) (2020), 235–267. DOI: 10.1515/forum-2017-0219.
    • B. Keller, A remark on the generalized smashing conjecture, Manuscripta Math. 84(2) (1994), 193–198. DOI: 10.1007/BF02567453.
    • B. Keller and D. Vossieck, Aisles in derived categories, Deuxieme Contact Franco-Belge en Algebre (Faulx-les-Tombes, 1987), Bull. Soc. Math....
    • H. Krause, Smashing subcategories and the telescope conjecture – an algebraic approach, Invent. Math. 139(1) (2000), 99–133. DOI: 10.1007/s002229900022.
    • H. Krause, Coherent functors in stable homotopy theory, Fund. Math. 173(1) (2002), 33–56. DOI: 10.4064/fm173-1-3.
    • H. Krause, Localization theory for triangulated categories, Preprint (2008). arXiv:0806.1324.
    • H. Krause and J. Stovıcek , The telescope conjecture for hereditary rings via Ext-orthogonal pairs, Adv. Math. 225(5) (2010), 2341–2364. DOI:...
    • R. Laking, Purity in compactly generated derivators and t-structures with Grothendieck hearts, Math. Z. 295(3–4) (2020), 1615–1641. DOI: 10.1007/...
    • F. Marks and J. Vitoria ´ , Silting and cosilting classes in derived categories, J. Algebra 501 (2018), 526–544. DOI: 10.1016/j.jalgebra.2017.12.031.
    • E. Monari Martinez, On pure-injective modules, in: “Abelian Groups and Modules” (Udine, 1984), CISM Courses and Lect. 287, Springer, Vienna,...
    • A. Neeman, The chromatic tower for D(R), With an appendix by Marcel B¨okstedt, Topology 31(3) (1992), 519–532. DOI: 10.1016/0040-9383(92)...
    • P. Nicolas, M. Saorın, and A. Zvonareva, Silting theory in triangulated categories with coproducts, J. Pure Appl. Algebra 223(6) (2019), 2273–2319....
    • A. Polishchuk, Constant families of t-structures on derived categories of coherent sheaves, Mosc. Math. J. 7(1) (2007), 109–134, 167. DOI:...
    • F. Pop, A note on cosilting modules, J. Algebra Appl. 16(11) (2017), 1750218, 11 pp. DOI: 10.1142/S0219498817502188.
    • M. Prest, “Purity, Spectra and Localisation”, Encyclopedia of Mathematics and its Applications 121, Cambridge University Press, Cambridge,...
    • C. Psaroudakis and J. Vitoria , Realisation functors in tilting theory, Math. Z. 288(3–4) (2018), 965–1028. DOI: 10.1007/s00209-017-1923-y.
    • D. C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math. 106(2) (1984), 351–414. DOI: 10.2307/2374308.
    • M. Saorın and J. Stovıcek , t-structures with Grothendieck hearts via functor categories, Preprint (2020). arXiv:2003-01401.
    • M. Saorın, J. Stovıcek, and S. Virili , t-Structures on stable derivators and Grothendieck hearts, Preprint (2017). arXiv:1708.07540.
    • J. Saroch, Approximations and Mittag-Leffler conditions the tools, Israel J. Math. 226(2) (2018), 737–756. DOI: 10.1007/s11856-018-1710-4.
    • N. Spaltenstein, Resolutions of unbounded complexes, Compositio Math. 65(2) (1988), 121–154. [45] D. Stanley, Invariants of t-structures and...
    • D. Stanley and A.-C. van Roosmalen, t-structures on hereditary categories, Math. Z. 293(1–2) (2019), 731–766. DOI: 10.1007/s00209-018-2190-2.
    • G. Stevenson, Derived categories of absolutely flat rings, Homology Homotopy Appl. 16(2) (2014), 45–64. DOI: 10.4310/HHA.2014.v16.n2.a3.
    • J. Stovıcek , Derived equivalences induced by big cotilting modules, Adv. Math. 263 (2014), 45–87. DOI: 10.1016/j.aim.2014.06.007.
    • R. W. Thomason, The classification of triangulated subcategories, Compositio Math. 105(1) (1997), 1–27. DOI: 10.1023/A:1017932514274.
    • P. Zhang and J. Wei, Cosilting complexes and AIR-cotilting modules, J. Algebra 491 (2017), 1–31. DOI: 10.1016/j.jalgebra.2017.07.022.
    • M. Ziegler, Model theory of modules, Ann. Pure Appl. Logic 26(2) (1984), 149–213. DOI: 10.1016/0168-0072(84)90014-9.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno