Ir al contenido

Documat


Isoperimetric cones and minimal solutions of partial overdetermined problems

  • Autores: Filomena Pacella Árbol académico, Giulio Tralli
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 65, Nº 1, 2021, págs. 61-81
  • Idioma: inglés
  • DOI: 10.5565/publicacionsmatematiques.v65i1.383647
  • Enlaces
  • Resumen
    • In this paper we consider a partial overdetermined mixed boundary value problem in domains inside a cone as in [18]. We show that, in cones having an isoperimetric property, the only domains which admit a solution and which minimize a torsional energy functional are spherical sectors centered at the vertex of the cone. We also show that cones close in the C1,1 -metric to an isoperimetric one are also isoperimetric, generalizing so a result of [1]. This is achieved by using a characterization of constant mean curvature polar graphs in cones which improves a result of [18].

  • Referencias bibliográficas
    • E. Baer and A. Figalli, Characterization of isoperimetric sets inside almostconvex cones, Discrete Contin. Dyn. Syst. 37(1) (2017), 1–14....
    • C. Bandle, “Isoperimetric Inequalities and Applications”, Monographs and Studies in Mathematics 7, Pitman (Advanced Publishing Program), Boston,...
    • J. E. Brothers and W. P. Ziemer, Minimal rearrangements of Sobolev functions, J. Reine Angew. Math. 1988(384) (1988), 153–179.
    • X. Cabre, X. Ros-Oton, and J. Serra ´ , Sharp isoperimetric inequalities via the ABP method, J. Eur. Math. Soc. (JEMS) 18(12) (2016), 2971–2998....
    • J. Choe and S.-H. Park, Capillary surfaces in a convex cone, Math. Z. 267(3– 4) (2011), 875–886. DOI: 10.1007/s00209-009-0651-3.
    • G. Ciraolo and A. Roncoroni, Serrin’s type overdetermined problems in convex cones, Calc. Var. Partial Differential Equations 59(1) (2020),...
    • G. De Philippis and F. Maggi, Regularity of free boundaries in anisotropic capillarity problems and the validity of Young’s law, Arch. Ration....
    • A. Figalli and E. Indrei, A sharp stability result for the relative isoperimetric inequality inside convex cones, J. Geom. Anal. 23(2) (2013),...
    • J. Guo and C. Xia, A partially overdetermined problem in a half ball, Calc. Var. Partial Differential Equations 58(5) (2019), Paper No. 160,...
    • A. Henrot and M. Pierre, “Variation et optimisation de formes. Une analyse g´eom´etrique”, Math´ematiques et Applications 48, Springer, Berlin,...
    • S. Kesavan, “Topics in Functional Analysis and Applications”, John Wiley & Sons, Inc., New York, 1989.
    • S. Kesavan, “Symmetrization & Applications”, Series in Analysis 3, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006. DOI:...
    • J. Lamboley and P. Sicbaldi, New examples of extremal domains for the first eigenvalue of the Laplace–Beltrami operator in a Riemannian manifold...
    • J. M. Lee, “Introduction to Riemannian Manifolds”, Second edition, Graduate Texts in Mathematics 176, Springer, Cham, 2018. DOI: 10.1007/978-3-319-...
    • P.-L. Lions and F. Pacella, Isoperimetric inequalities for convex cones, Proc. Amer. Math. Soc. 109(2) (1990), 477–485. DOI: 10.2307/2048011.
    • P.-L. Lions, F. Pacella, and M. Tricarico, Best constants in Sobolev inequalities for functions vanishing on some part of the boundary and...
    • F. Maggi, “Sets of Finite Perimeter and Geometric Variational Problems. An Introduction to Geometric Measure Theory”, Cambridge Studies in...
    • F. Pacella and G. Tralli, Overdetermined problems and constant mean curvature surfaces in cones, Rev. Mat. Iberoam. 36(3) (2020), 841–867....
    • F. Pacella and M. Tricarico, Symmetrization for a class of elliptic equations with mixed boundary conditions, Atti Sem. Mat. Fis. Univ. Modena...
    • G. Polya and G. Szeg ´ o¨, “Isoperimetric Inequalities in Mathematical Physics”, Annals of Mathematics Studies 27, Princeton University Press,...
    • M. Ritore and C. Rosales ´ , Existence and characterization of regions minimizing perimeter under a volume constraint inside Euclidean cones,...
    • J. Simon, Differentiation with respect to the domain in boundary value problems, Numer. Funct. Anal. Optim. 2(7–8) (1980), 649–687 (1981)....
    • J. Soko lowski and J.-P. Zolesio, “Introduction to Shape Optimization. Shape Sensitivity Analysis”, Springer Series in Computational Mathematics...
    • P. Sternberg and K. Zumbrun, A Poincar´e inequality with applications to volume-constrained area-minimizing surfaces, J. Reine Angew. Math....
    • G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4) 110 (1976), 353–372. DOI: 10.1007/BF02418013.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno