Ir al contenido

Documat


Normal Forms for Manifolds of Normally Hyperbolic Singularities and Asymptotic Properties of Nearby Transitions

  • Duignan, Nathan [1]
    1. [1] University of Colorado
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 20, Nº 2, 2021
  • Idioma: inglés
  • DOI: 10.1007/s12346-021-00458-w
  • Enlaces
  • Resumen
    • This paper contains theory on two related topics relevant to manifolds of normally hyperbolic singularities. First, theorems on the formal and Ck normal forms for these objects are proved. Then, the theorems are applied to give asymptotic properties of the transition map between sections transverse to the centre-stable and centre-unstable manifolds of some normally hyperbolic manifolds. A method is given for explicitly computing these so called Dulac maps. The Dulac map is revealed to have similar asymptotic structures as in the case of a saddle singularity in the plane.

  • Referencias bibliográficas
    • Belitskii, G.R.: C∞-normal forms of local vector fields. Acta Appl. Math. 70(1), 23–41 (2002)
    • Bonckaert, P., Naudot, V.: Asymptotic properties of the Dulac map near a hyperbolic saddle in dimension three. Annales de la Faculté des Sciences...
    • Bruno, A.D.: Local Methods in Nonlinear Differential Equations. Springer Series in Soviet Mathematics. Springer, Berlin (1989)
    • Caillau, ., Fejoz, Jacques., Orieux, Michaël., Roussarie, Robert.: Singularities of min time affine control systems. preprint, February 2018
    • Chen, K.-T.: Equivalence and decomposition of vector fields about an elementary critical point. Am. J. Math. 85(4), 693–722 (1963)
    • Duignan, N., Dullin, H.R.: Regularisation for planar vector fields. Nonlinearity 33(1), 106–138 (2019)
    • Duignan, N., Dullin, H.: On the C8/3-regularisation of simultaneous binary collisions in the collinear 4-body problem. J. Differ. Equ. 269,...
    • Duignan, N., Moeckel, R., Montgomery, R., Yu, G.: Chazy-type asymptotics and hyperbolic scattering for the n-body problem. Arch. Ration. Mech....
    • Dumortier, F., Roussarie, R.: Smooth normal linearization of vector fields near lines of singularities. Qual. Theory Dyn. Syst. 9(1), 39–87...
    • Dumortier, F., Roussarie, R., Sotomayor, J.: Bifurcations of cuspidal loops. Nonlinearity 10(6), 1369– 1408 (1997)
    • Elphick, C., Tirapegui, E., Brachet, M.E., Coullet, P., Iooss, G.: A simple global characterization for normal forms of singular vector fields....
    • Golubitsky, M., Guillemin, V.: Stable Mappings and Their Singularities. Graduate Texts in Mathematics. Springer, New York (1973)
    • Hartman, P.: Ordinary Differential Equations. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (2002)
    • Ilyashenko, Y., Li, W.: Nonlocal Bifurcations. Mathematical Surveys and Monographs, vol. 66. American Mathematical Society, Providence (1998)
    • Lombardi, Eric., Stolovitch, Laurent.: Normal forms of analytic perturbations of quasihomogeneous vector fields: Rigidity, invariant analytic...
    • Mourtada, A.: Cyclicité finie des polycycles hyperboliques de champs de vecteurs du plan mise sous forme normale. Bifurc. Planar Vector Fields...
    • Murdock, J.: Normal Forms and Unfoldings for Local Dynamical Systems. Springer, Berlin (2006)
    • Roussarie, R.: Modeles Locaux de Champs Et de Formes, volume 30 of Astérisque. Société mathématique de France (1975)
    • Roussarie, R.: On the number of limit cycles which appear by perturbation of separatrix loop of planar vector fields. Boletim da Sociedade...
    • Roussarie, Robert: Bifurcation of Planar Vector Fields and Hilbert’s Sixteenth Problem. Progress in Mathematics, vol. 164. Birkhäuser, Basel...
    • Roussarie, R., Rousseau, C.: Almost planar homoclinic loops in R3. J. Differ. Equ. 126(1), 1–47 (1996)
    • Siegel, C.L., Moser, J.K.: Lectures on Celestial Mechanics: Reprint of the 1971 Edition. Springer (2012)
    • Sternberg, S.: On the structure of local homeomorphisms of Euclidean n-Space II. Am. J. Math. 80(3), 623–631 (1958)
    • Takens, F.: Partially hyperbolic fixed points. Topology 10(2), 133–147 (1971)
    • Walcher, S.: Symmetries and convergence of normal form transformations. Monografías de la Real Academia de Ciencias Exactas, Físicas, Químicas...
    • Wiggins, S.: Normally Hyperbolic Invariant Manifolds in Dynamical Systems. Applied Mathematical Sciences. Springer, New York (1994)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno