Ir al contenido

Documat


Perturbed Impulsive Neutral Stochastic Functional Differential Equations

  • Cheng, Lijuan [1] ; Hu, Lanying [2] ; Ren, Yong [2]
    1. [1] Lingnan Normal University

      Lingnan Normal University

      China

    2. [2] Anhui Normal University

      Anhui Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 20, Nº 2, 2021
  • Idioma: inglés
  • DOI: 10.1007/s12346-021-00469-7
  • Enlaces
  • Resumen
    • This paper studies the asymptotic behavior of the mild solution for a class of perturbed impulsive neutral stochastic functional differential equations driven by fractional Brownian motion in Hilbert space. We establish the conditions under which the mild solutions of perturbed impulsive neutral stochastic functional differential equation and the unperturbed one are close on finite time interval when the perturbation tends to zero. Moreover, we show the result holds on time interval whose length tends to infinity as the perturbation tends to zero. As an application, the asymptotic behavior of the mild solution for a class of perturbed impulsive neutral stochastic partial differential equations driven by fractional Brownian motion in Hilbert space is proposed to show the feasibility of the obtained result.

  • Referencias bibliográficas
    • Anguraj, A., Vinodkumar, A.: Existence, uniqueness and stability results of impulsive stochastic semilinear neutral functional differential...
    • Balasubramaniam, P.: Existence of solution of functional stochastic differential inclusions. Tamkang J. Math. 33, 35–43 (2002)
    • Boufoussi, B., Hajji, S.: Neutral stochastic functional differential equations driven by afractional Brownian motion in a Hilbert space. Statist....
    • Bainov, D., Simeonov, P.: Integral Inequalities and Applications. Kluwer Academiac Publishers, Dordrecht (1992)
    • Chang, Y., Angurajb, A., Arjunan, M.: Existence results for impulsive neutral functional differential equations with infinite delay. Nonlinear...
    • Chen, G., Gaans, O., Lunel, S.: Existence and exponential stability of a class of impulsive neutral stochastic partial differential equations...
    • Chen, F., Wen, X.: Asymptotic stability for impulsive functional differential equation. J. Math. Anal. Appl. 336, 1149–1160 (2007)
    • Deng, S., Shu, X., Mao, J.: Existence and exponential stability for impulsive neutral stochastic functional differential equations driven...
    • Fu, X., Zhu, Q.: Exponential stability of neutral stochastic delay differential equation with delaydependent impulses. Appl. Math. Comput....
    • Guo, Y., Shu, X., Li, Y., Xu, F.: The existence and Hyers-Ulam stability of solution for an impulsive Riemann-Liouville fractional neutral...
    • Hu, J., Yuan, C.: Strong convergence of neutral stochastic functional differential equations with two time-scales. Discrete Contin. Dyn. Syst....
    • Hu, L., Ren, Y.: Existence results for impulsive neutral stochastic functional integro-differential equations with infinite delays. Acta Appl....
    • Jovanovi´c, M., Jankovi´c, S.: Neutral stochastic functional differential equations with additive perturbations. Appl. Math. Comput. 213,...
    • Jovanovi´c, M., Jankovi´c, S.: On perturbed nonlinear Itoˆ type stochastic integrodifferential equations. J. Math. Anal. Appl. 269, 301–316...
    • Jovanovi´c, M., Jankovi´c, S.: Functionally perturbed stochastic differential equations. Math. Nachrihten 16, 1808–1822 (2006)
    • Khasmnskii, R.: On stochastic processes defined by differential equations with a small parameter. Theory Prob. Appl. 11, 211–268 (1966)
    • Liu, J., Xu, W.: An averaging result for impulsive fractional neutral stochastic differential equations. Appl. Math. Lett. 114, 106892 (2021)
    • Liu, J., Xu, W., Guo, Q.: Averaging principle for impulsive stochastic partial differential equations. Stoch. Dyn. 1, 1 (2020)
    • Li, S., Shu, L., Shu, X., Xu, F.: Existence and Hyers–Ulam stability of random impulsive stochastic functional differential equations with...
    • Ren, Y., Cheng, X., Sakthivel, R.: Impulsive neutral stochastic functional integro-differential equations with infinite delay driven by fBm....
    • Ren, Y., Hou, T., Sakthivel, R.: Non-densely defined impulsive neutral stochastic functional differential equations driven by fBm in Hilbert...
    • Shu, X., Shi, Y.: A study on the mild solution of impulsive fractional evolution equations. Appl. Math. Comput. 273, 465–476 (2016)
    • Wang, J., Zhou, Y., Lin, Z.: On a new class of impulsive fractional differential equations. Appl. Math. Comput. 242, 649–657 (2014)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno