Ir al contenido

Documat


Equivalence Transformation, Dynamical Analysis and Exact Solutions of Harry-Dym System with Variable Coefficients

  • Chang, Lina [1] ; Liu, Hanze [1] ; Li, Xuexia [1] ; Xin, Xiangpeng [1]
    1. [1] Liaocheng University

      Liaocheng University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 20, Nº 2, 2021
  • Idioma: inglés
  • DOI: 10.1007/s12346-021-00464-y
  • Enlaces
  • Resumen
    • In this paper, the combination of equivalence transformation and dynamical system method is performed for Harry-Dym (H-D) system. By means of the improved CK direct method, we give the relationship between the variable coefficients H-D system and the corresponding constant coefficients one. Then, the bifurcation of the nonlinear H-D system is obtained, and the existence of possible solitary wave solutions and some uncountably infinite periodic wave solutions are given by using dynamical system method. Furthermore, the explicit parametric representations of the exact solutions of the system are provided.

  • Referencias bibliográficas
    • Lou, S., Ma, H.: Non-lie symmetry groups of (2 + 1)-dimensional nonlinear systems obtained from a simple direct method. J. Phys. A Math....
    • Khan, K., Akbar, M.: The (exp)(−φ(ξ ))-expansion method for finding traveling wave solutions of Vakhnenko-Parkes equation. Int. J. Dyn. Syst....
    • Khater, M.: Exact traveling wave solutions for the generalized Hirota-Satsuma couple KdV system using the (exp) (−φ(ξ ))-expansion method....
    • Hafez, M.: Exact solutions to the (3+1)-dimensional coupled KleinCGordonCZakharov equation using (exp) (−φ(ξ ))-expansion method. Alex....
    • Kadkhode, N., Jafari, H.: Analytical solutions of the Gerdjikov-Ivanov equation by using (exp)(−φ(ξ ))-expansion method. Opt. Int. J. Light....
    • Wang, M., Li, X., Zhang, J.: The ( G G )-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics....
    • Yong, M.: Expanded ( G G2 ) expansion method to solve separated variables for the 2+1-dimensional NNV equation. Adv. Math. Phys. 2018,...
    • Bibi, S., Mohyuddin, S., Ullah, R.: Exact solutions for STO and (3+1)-dimensional KdV-ZK equations using ( G G2 ) -expansion method. Results...
    • Singh, M., Gupta, R.: Explicit exact solutions for variable coefficient Gardner equation: an application of Riccati equation mapping method....
    • Tala-Tebue, E., Djoufack, Z., Fendzi-Donfack, E.: Exact solutions of the unstable nonlinear Schro¨dinger equation with the new Jacobi elliptic...
    • Lou, S., Hu, X.: Infinitely many Lax pairs and symmetry constraints of the KP equation. J. Math. Phys. 38, 6401–6427 (1997)
    • Xin, X., Miao, Q., Chen, Y.: Nonlocal symmetry, optimal systems, and explicit solutions of the mKdV equation. Chin. Phys. B 23, 010203 (2014)
    • Liu, H., Xin, X., Wang, Z., Liu, X.: Bäcklund transformation classification, integrability and exact solutions to the generalized Burgers’-KdV...
    • Ablowitz, M., Clarkson, P.: Solitons, nonlinear evolution equations and inverse scattering. Cambridge University Press, Cambridge (1991)
    • Liu, H., Sang, B., Xin, X.: CK transformations, symmetries, exact solutions and conservation laws of the generalized variable-coefficient...
    • Liu, H., Bai, C., Xin, X., Li, X.: Equivalent transformations and exact solutions to the generalized cylindrical KdV type of equation. Nucl....
    • Bagderina, Y., Tarkhanov, N.: Differential invariants of a class of Lagrangian systems with two degrees of freedom. J. Math. Anal. Appl. 410,...
    • Bruzón, M., Rosa, R., Tracinà, R.: Exact solutions via equivalence transformations of variablecoefficient fifth-order KdV equations. Appl....
    • Ivanova, N., Sophocleous, C.: On the group classification of variable-coefficient nonlinear diffusionconvection equations. J. Comput. Appl....
    • Sophocleous, C., Tracinà, R.: Differential invariants for quasi-linear and semi-linear wave-type equations. Appl. Math. Comput. 202, 216–228...
    • Tsaousi, C., Tracinà, R., Sophocleous, C.: Differential invariants for third-order evolution equations. Commun. Nonlinear Sci. Numer. Simul....
    • Vaneeva, O., Popovych, R., Sophocleous, C.: Extended group analysis of variable coefficient reactiondiffusion equations with exponential nonlinearities....
    • Cao, L., Si, X., Zheng, L.: Convection of Maxwell fluid over stretching porous surface with heat source/sink in presence of nanoparticles:...
    • Ray, S.: Lie symmetry analysis and reduction for exact solution of (2+1)-dimensional BogoyavlenskyKonopelchenko equation by geometric...
    • Wang, Z., Liu, X.: Bifurcations and exact traveling wave solutions for the KdV-like equation. Nonlinear Dyn. 95, 465–477 (2019)
    • Liu, H., Li, J.: Symmetry reductions, dynamical behavior and exact explicit solutions to the Gordon types of equations. J. Comput. Appl. Math....
    • Liu, H., Li, J.: Lie symmetry analysis and exact solutions for the extended mKdV equation. Acta Appl. Math. 109, 1107–1119 (2010)
    • Li, J.: Bifurcations of travelling wave solutions for two generalized Boussinesq systems. Sci. China Ser. A Math. 51, 1577–1592 (2008)
    • Cao, C., Geng, X.: Dual representation of Bargmann system and solution of coupled Harry-Dym equation. J. Math. 35, 314–322 (1992). (in Chinese)
    • Yang, G., Huang, K.: Darboux transformation and soliton solution of coupled Harry-Dym equation. J. North China Univ. Water Resour. Hydropower...
    • Zhang, Y., Li, J., Zhang, J.: Symmetric reduction of coupled Harry-Dym equations. J. Northwest. Univ. 41, 961–963 (2011). (in Chinese)
    • Hu, X., Hu, H.: Symmetry reduction of nonlinear coupled Harry-Dym equations. J. Shanghai Univ. Technol. 38, 8–12 (2016). (in Chinese)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno