Ir al contenido

Documat


Polygons, conics and billiards

  • Ronaldo A. Garcia [1]
    1. [1] Universidade Federal de Goiás

      Universidade Federal de Goiás

      Brasil

  • Localización: Materials matemàtics, ISSN-e 1887-1097, Nº. 0, 2020
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this expository article we will describe some elementary properties of billiards and Poncelet maps and special attention is dedicated to N-periodic orbits. In general, problems involving billiards are easy to state and under-standing, and difficult or laborious to solve.

  • Referencias bibliográficas
    • Alkoumi, Naeem; Schlenk, Felix. Shortest closed billiard orbits on convex tables. Manuscripta Math. 147 (2015), no. 3–4, 365–380.
    • Arseniy Akopyan and Richard Schwartz and Serge Tabachnikov, Billiards in Ellipses Revisited, Eur. J. Math., 9. 2020, http://doi.org/ 10.1007/s40879-020-00426-9...
    • Akhmet, Marat. Principles of discontinuous dynamical systems. Springer Verlag, New York, (2010) xii+176 pp.
    • Amiran, Edoh Lazutkin coordinates and invariant curves for outer billiards. J. Math. Phys. 36 (1995), no. 3, 1232–1241.
    • Arnold,V. I., Singularities of caustics and wave fronts, Math. Appl. 62, Kluwer, Dordrecht, 1990.
    • Avila, A., Kaloshin, V., de Simoi, J. An integrable deformation of an ellipse of small eccentricity is an ellipse, Ann. of Math., Vol. 184...
    • Arnold, M. Bialy, M. Nonsmooth convex caustics for Birkhoff billiards. Pacific J. Math. 295 (2018), no. 2, 257–269.
    • Barth, W. and Bauer, T. Poncelet Theorems, Exp. Math., 14 (1996), 125–144.
    • Berger, Marcel, Geometry Revealed: a Jacob’s Ladder to Higher Geometry. Springer Verlag, (2005) 831pp.
    • Berger, Marcel, A panoramic view of Riemannian geometry. Springer Verlag, (2002).
    • Bezdek, K., Connelly, R. Covering curves by translates of a convex set. Am. Math. Monthly 96(9),789–806 (1989).
    • Bialy, M. and Mronovthe, E. The Birkhoff-Porstsky conjecture for centrally-symmetric billiard tables. arXiv:2008.03566v2 (2020).
    • Birkhoff, G. On the periodic motions of dynamical systems. Acta Mathematica, 50(1):359–379 (1927).
    • Birkhoff, George D. Dynamical systems. With an addendum by Jurgen Moser. American Mathematical Society Colloquium Publications, Vol. IX American...
    • Brogliato, Bernard.Nonsmoothimpactmechanics.Models, dynamics and control. Lecture Notes in Control and Information Sciences, 220. Springer-Verlag...
    • Boyland, P. Dual billiards, twist maps and impact oscillators Nonlinearity 9 (1996) 1411–1438. Bryant R. Poncelet’s theorem. http://arimoto.lolipop.jp/...
    • Bryant R. Poncelet’s theorem. http://arimoto.lolipop.jp/ PonceletforBMC.pdf
    • Bunimovich, Leonid A. Mechanisms of chaos in billiards: dispersing, defocusing and nothing else. Nonlinearity 31 (2018), no. 2, R78–R92.
    • Chernov, Nikolai; Markarian, Roberto Introduction to the ergodic theory of chaotic billiards. Monografías del Instituto de Matemática y Ciencias...
    • Cima, Anna; Gasull, Armengol; Mañosa, Víctor.OnPoncelet’smaps. Comput. Math. Appl. 60 (2010), no. 5, 1457–1464.
    • Coriolis, G.-G. Gaspard-Gustave de Coriolis,G.G. Théorie Mathématique des Effets du Jeu de Billiard, Carilian-Goeury, Paris (1835).
    • H. T. Croft, H. T.; Swinnerton-Dyer, H. P. F. On the Steinhaus billiard table problem. Volume 59(1) (1963), pp. 37–41
    • Darboux, G. Principes de Géométrie Analytique. Paris: GauthierVillars (1917).
    • Del Centina, Andrea Poncelet’s porism: a long story of renewed discoveries, I. Arch. Hist. Exact Sci. 70 (2016), no. 1, 1–122.
    • Del Centina, Andrea Poncelet’s porism: a long story of renewed discoveries, II. Arch. Hist. Exact Sci. 70 (2016), no. 2, 123–173.
    • Del Centina, Andrea Pascal’s mystichexagram, and a conjectural restoration of his lost treatise on conic sections. Arch. Hist. Exact Sci....
    • Cieślak, W. ; Mozgawa, W. In search of a measure in Poncelet’s porism. Acta Math. Hungar. 149 (2016), no. 2, 338–345.
    • Charles, M. Propriétés genérales des arcs d’une section conique dont la différence est rectifiable. Comptes Rendus Hebdomadaires des Séances...
    • Connes, A., Zagier, D. A property of parallelograms inscribed in ellipses. The American Math. Monthly, 114(10): 909?914. (2007).
    • Coxeter, H. Projective Geometry. Second Editon. Springer Verlag (1987).
    • Dias Carneiro, Mário Jorge; Oliffson Kamphorst, Sylvie; Pinto de Carvalho, Sônia. Elliptic islands in strictly convex billiards. Ergodic Theory...
    • Dragović, V.(2011).Poncelet-Darbouxcurves, theircompletedecomposition and Marden theorem. Int. Math. Res. Not. IMRN no. 15, 3502–3523.
    • Dragović, V., Radnović, M. (2014). Bicentennial of the great Poncelet theorem (1813–2013): current advances. Bull. Amer. Math. Soc. (N.S.),...
    • Dragović, Vladimir; Radnović, Milena Poncelet porisms and beyond. Integrable billiards, hyperelliptic Jacobians and pencils of quadrics. Frontiers...
    • M. Farber and S. Tabachnikov, Topology of cyclic configuration spaces and periodic trajectories of multi-dimensional billiards, Topology 41...
    • Fierobe, C. Complex caustics of the elliptic billiard. arXiv:1904.03706v6. Arnold Math J. (2020). https://doi.org/10. 1007/s40598-020-00152-w...
    • Flatto, Leopold. Poncelet’s theorem. Chapter 15 by S. Tabachnikov. American Mathematical Society, Providence, RI, (2009) xvi+240 pp.
    • Fokicheva, V. V. Topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics. Sb. Math. 206 (2015),...
    • Fuchs, Dmitry; Tabachnikov, Serge. Mathematical omnibus. Thirty lectures on classic mathematics. American Mathematical Society, Providence,...
    • Gaivão, José Pedro. Asymptotic periodicity in outer billiards with contraction. Ergodic Theory Dynam. Systems 40 (2020), no. 2, 402– 417.
    • G. Galperin, A. Stepin, and Y. Vorobets. Periodic orbits in polygons; generating mechanisms, Russian Math. Surueys 47 (1992), 5–80.
    • Garcia, R., EllipticBilliardsandEllipsesAssociatedtothe3-Periodic Orbits, American Mathematical Monthly, 126(06), (2019) 491–504.
    • Garcia, R., Reznik, D. and Koiller J. Loci of 3-periodics in Ell. Billiard: why so many ellipses? Arxiv. (2020).
    • Garcia, R., Reznik, D. Invariants of Simple and Self-Intersected NPeriodics in the Elliptic Billiard. Arxiv (2020).
    • Garcia, R., Reznik, D. and Koiller J. Loci of 3-periodics in elliptic billiard: why so many ellipses? Arxiv (2020).
    • Garcia, R., Reznik, D. and Koiller J. New properties of elliptic billiards. Amer. Math. Monthly. To appear (2021).
    • Garcia, Ronaldo; Sotomayor, Jorge Differential equations of classical geometry, a qualitative theory. Publicações Matemáticas do IMPA. 27o...
    • Genin, Daniel. Hyperbolic outer billiards: a first example. Nonlinearity 19 (2006), no. 6, 1403–1413.
    • M. Ghomi, Shortest periodic billiard trajectories in convex bodies. Geom. Funct. Anal. 14(2), 295–302 (2004).
    • Glaeser, G., Odehnal B., Stachel, H. (2016). The Universe of Conics: From the Ancient Greeks to 21st Century Developments. New York: Springer...
    • Guillemin, Victor; Melrose, Richard An inverse spectral result for elliptical regions in R2. Adv. in Math. 32 (1979), no. 2, 128–148.
    • Glutsyuk, A., Shustin, E. On polynomially integrable planar outer billiards and curves with symmetry property. Math. Ann. 372, 1481– 1501...
    • Griffiths, P., Harris, J. On Cayley’s explicit solution to Poncelet’s porism, Enseign. Math. 24(1-2): 31–40 (1978).
    • Gruber, Peter M. Convex billiards. Geom. Dedicata 33 (1990), no. 2, 205–226.
    • Gutkin, E. Billiard dynamics: a survey with the emphasis on open problems. Regul. Chaotic Dyn. 8(1):1–13 (2003).
    • Gutkin, E. Billiards in Polygons. Physica D 19, 311–333, (1986).
    • Gutkin, E. ; Katok, A. Caustics for inner and outer billiards. Communications in Mathematical Physics 173,(1995) pp. 101–133.
    • Gutkin, E. Two Applications of Calculus to Triangular Billiards. Amer. Math. Monthly. 104(7) pp. 618–622 (1997).
    • Hasselblatt,Boris; Katok,Anatole.Afirstcourseindynamics.Witha panorama of recent developments. Cambridge University Press, New York, (2003)....
    • Hassenblatt B. e Katok A. Introduction to the modern theory of dynamical systems, Cambridge University Press, Cambridge (1995).
    • Halbeisen L., Hungerbühler N. (2015). A Simple Proof of Poncelet’s Theorem(ontheOccasionofItsBicentennial).Amer. Math. Monthly, 122(6): 537–551....
    • Halbeisen, Lorenz, Hungerbühler, Norbert. Closed chains of conics carrying Poncelet triangles. Beitr. Algebra Geom. 58 (2017), no. 2, 277–302....
    • Hénon, M. Chaotic scattering modelled by an inclined billiard. Progress in chaotic dynamics. Phys. D 33 (1988), no. 1–3, 132–156.
    • Holmes, P. J. The dynamics of repeated impacts with a sinusoidally vibrating table. J. Sound Vibration 84 (1982), no. 2, 173–189.
    • Kaloshin V, Sorrentino A. On the integrability of Birkhoff billiards. Phil. Trans. R. Soc. A 376: 20170419 (2018)
    • Kaloshin, Vadim; Sorrentino, Alfonso. On the local Birkhoff conjectureforconvexbilliards.Ann.ofMath.(2)188(2018),no.1,315–380.
    • Kozlova, T. V. Nonintegrability of a rotating elliptic billiard. J. Appl. Math. Mech. 62 (1998), no. 1, 81–85 .
    • Kamphorst, Sylvie Oliffson; Pinto-de-Carvalho, Sônia. The first Birkhoff coefficient and the stability of 2-periodic orbits on billiards. Experiment....
    • Katok, A. B. Billiard table as a playground for a mathematician. In V. Prasolov & Y. Ilyashenko (Eds.), Surveys in modern mathematics,...
    • Kimberling, C.: Encyclopedia of triangle centers (2019). https:// faculty.evansville.edu/ck6/encyclopedia/ETC.html
    • J. L. King. Three problems in search of a measure, Amer. Math. Monthly, 101 (1994), 609–628.
    • Klingenberg, Wilhelm P. A. Riemannian geometry. Second edition. De Gruyter Studies in Mathematics, 1. Walter de Gruyter & Co., Berlin,...
    • Kołodziej, Rafał. The rotation number of some transformation related to billiards in an ellipse. Studia Math. 81 (1985), no. 3, 293– 302.
    • Kozlov, Valeri˘ı V.; Treshchëv, Dmitri˘ı V. Billiards. A genetic introduction to the dynamics of systems with impacts. Translations of Mathematical...
    • Langevin, Remi ; Levitt, Gilbert ; Rosenberg, Harold. Classes d’homotopiedesurfacesavecrebroussementsetqueuesd’arondedans R3. Canad. J. Math....
    • Lebesgue, H. Les coniques. Gauthier Villars. Paris. (1942).
    • Levi, M., Tabachnikov, S. . The Poncelet Grid and Billiards in Ellipses. American Math. Monthly, 114:895–908 (2007).
    • Lopes, Artur O. ; Sebastiani, Marcos. Poncelet pairs and the twist map associated to the Poncelet billiard. Real Anal. Exchange 35 (2010),...
    • Marco, Jean-Pierre.Entropyofbilliardmapsandadynamicalversion of the Birkhoff conjecture. J. Geom. Phys. 124 (2018), 413–420.
    • Marò, Stefano. Chaotic dynamics in an impact problem. Ann. Henri Poincaré 16 (2015), no. 7, 1633–1650.
    • Mather, J. Non-existence of invariant circles. Ergod. Th. Dyn. Syst. 4 (1984), 301–309.
    • Melo, W. and Palis, J. Introdução aos Sistemas Dinâmicos, Projeto Euclides, IMPA, 2a. edição. (2018).
    • Mirman, Boris. Explicit solutions to Poncelet’s porism. Linear Algebra Appl. 436 (2012), no. 9, 3531–3552.
    • Moser, J.K. Is the solar system stable? Math. Intelligencer 1 no. 2, 65–71 (1978/79).
    • Moser, J. K. On Invariant Curves of Area–Preserving Mappings of an Annulus , Nachr. Akad. Wiss. Göttingen, Math.–Phys. Kl.II, (1962), 1–20.
    • Poncelet, J.-V. Traité des propriétés projectives des figures. Metz, Paris. (1822).
    • Popov, Georgi. Invariants of the length spectrum and spectral invariants of planar convex domains. Comm. Math. Phys. 161 (1994), no. 2, 335–364....
    • Poritsky, H. The billiard ball problem on a table with a convex boundary–an illustrative dynamical problem. Ann. of Math. (2) 51 (1950), 446–470.
    • Previato, E. Poncelet’s theorem in space. Proc. Amer. Math. Soc. 127(9) (1999), 2547–2556.
    • Ragazzo, Clodoaldo; Dias Carneiro, Mário Jorge; Adda-Zanata, Salvador. Introdução à Dinâmica de Aplicações do Tipo Twist, 25o Colóquio Brasileiro...
    • Reznik, Dan; Garcia, Ronaldo and Koiller, Jair. Can an elliptic billiard still surprise us? Math. Intelligencer vol.42, (2020) 6–17.
    • Reznik, Dan; Garcia, Ronaldo and Koiller, Jair. Eighty New Invariants in the Elliptic Billiard. ArXiv:2004.12497v11.
    • Romaskevich, O. On the incenters of triangular orbits on elliptic billiard. Enseign. Math. 60(3-4):247–255 (2014)
    • Romaskevich, O. Dynamique des systèmes physiques, formes normales et chaînes de Markov. These de Doctarat de L’Université de Lyon. (2016).
    • Rozikov, Utkir A. An Introduction to Mathematical Billiards. World Scientific Publishing Company, Singapore (2019)
    • M. R. Rychlik, Periodic points of the billiard ball map in a convex domain. J. Differential Geom. 30 (1):91–205 (1989).
    • Schwartz, Richard E. The plaid model. Annals of Mathematics Studies, 198. Princeton University Press, Princeton, NJ, (2019).
    • R.E. Schwartz, R. Outer billiards on kites. Annals of Mathematics Studies. 171. Princeton University Press (2009).
    • Schwartz, Richard E. Obtuse triangular billiards. II. One hundred degrees worth of periodic trajectories. Experiment. Math. 18 (2009), no....
    • Schwartz, R. The Poncelet grid. Adv. Geom. 7(2): 157-175 (2007).
    • Schwartz, R., Tabachnikov, S. Centers of Mass of Poncelet Polygons, 200 Years After. Math. Intelligencer 38(2): 29–34 (2016).
    • I. J. Schoenberg, On Jacobi-Bertrand’s proof of a theorem of Poncelet. Studies in pure mathematics, 623–627, Birkhäuser, Basel, (1983).
    • Sinai, Ya. G. Introduction to ergodic theory. Princeton University Press, Princeton, NJ, (1977).
    • Sinai, Y.G.: Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards. Usp. Mat. Nauk 25(2 (152)), 141– 192 (1970)....
    • Sorrentino, Alfonso. Mathematicians play... billiards! Mat. Cult. Soc. Riv. Unione Mat. Ital. (I) 4 (2019), no. 2, 131–144.
    • Sotomayor, J. Lições de Equações Diferenciais Ordinárias. Projeto Euclides, IMPA (1979).
    • Tabachnikov, S. Geometry and Billiards, vol. 30 of Student Mathematical Library. Providence, RI: American Mathematical Society (2005).
    • Tabachnikov, S. Outer billiards. Russian Math. Surveys 48 (1993), no. 6, 81–109.
    • Tabachnikov, Serge. A baker’s dozen of problems. Arnold Math. J. 1 (2015), no. 1, 59–67.
    • Tumanov, A. Scarcity of Periodic Orbits in Outer Billiards. J Geom Anal 30, 2479–2490 (2020).
    • Vedyushkina, V. V. ; Fomenko, A. T. Integrable topological billiards and equivalent dynamical systems. Izv. Math. 81 (2017), no. 4, 688– 733....
    • Vorobets, Ya. B. On the measure of the set of periodic points of a billiard. Math. Notes 55 (1994), no. 5-6, 455–460
    • Weisstein, E.: Mathworld (2019). http://mathworld.wolfram.com
    • Wojtkowski, Maciej. Principles for the design of billiards with nonvanishing Lyapunov exponents. Comm. Math. Phys. 105 (1986), no. 3, 391–414.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno