Ir al contenido

Documat


Asymptotic study of canonical correlation analysis: from matrix and analytic approach to operator and tensor approach

  • Autores: Jeanne Fine
  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 27, Nº. 2, 2003, págs. 165-174
  • Idioma: inglés
  • Títulos paralelos:
    • Estudio asintótico de análisis de correlación canónica: del enfoque analítico y matricial al enfoque basado en operadores y tensores.
  • Enlaces
  • Resumen
    • Asymptotic study of canonical correlation analysis gives the opportunity to present the different steps of an asymptotic study and to show the interest of an operator and tensor approach of multidimensional asymptotic statistics rather than the classical, matrix and analytic approach. Using the last approach, Anderson (1999) assumes the random vectors to have a normal distribution and the non zero canonical correlation coefficients to be distinct. The new approach we use, Fine (2000), is coordinate-free, distribution-free and permits to have no restriction on the canonical correlation coefficients multiplicity order. Of course, when vectors have a normal distribution and when the non zero canonical correlation coefficients are distinct, it is possible to find again Anderson's results but we diverge on two of them. In this methodological presentation, we insist on the analysis frame (Dauxois and Pousse, 1976), the sampling model (Dauxois, Fine and Pousse, 1979) and the different mathematical tools (Fine, 1987, Dauxois, Romain and Viguier, 1994) which permit to solve problems encountered in this type of study, and even to obtain asymptotic behaviour of the analyses random elements such as principal components and canonical variables.

  • Referencias bibliográficas
    • Anderson, T. W. (1999). Asymptotic Theory for Canonical Correlation Analysis. Journal of Multivariate Analysis, 70, 1-29.
    • Arconte, A. (1980). Étude asymptotique de l’analyse en composantes principales et de l’analyse canonique. Thèse de 3ème cycle, Université...
    • Billingsley, P. (1968). Convergence of probability measures. Wiley, New York.
    • Dauxois, J., Fine, J. and Pousse A. (1979). Échantillonnage en segmentation, étude de la convergence. Statistique et Analyse des Données,...
    • Dauxois, J. and Nkiet, G. M. (2002). Measures of Association for Hilbertian subspaces and some applications. Journal of Multivariate Analysis,...
    • Dauxois, J. and Pousse, A. (1976). Les analyses factorielles en calcul des probabilités et en statistique: essai d’étude synthétique....
    • Dauxois, J., Pousse, A. and Romain, Y. (1982). Asymptotic theory for the principal component analysis of a vector random function; some applications...
    • Dauxois, J., Romain, Y. and Viguier, S. (1994). Tensor products and statistics. Linear Algebra and its Applications, 210, 59-88.
    • Dossou-Gbete, S. and Pousse, A. (1991). Asymptotic study of eigenelements of a sequence of random self adjoint operators. Statistics, 22,...
    • Eaton, M. L. (1983). Multivariate statistics. A vector space approach. Wiley, New York.
    • Fine, J. (1987). On the validity of the perturbation method in asymptotic theory. Statistics, 18, 401-414.
    • Fine, J. (2000). Étude Asymptotique de l’Analyse Canonique. Pub. Inst. Stat. Univ. Paris, 44, 2-3, 21-72.
    • Kato, T. (1980). Perturbation theory for linear operators. Springer-Verlag, New York.
    • Romain, Y. (1979). Étude Asymptotique des approximations par échantillonnage de l’analyse en composantes principales d’une fonction aléatoire....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno