Ir al contenido

Documat


Partial cooperation and convex sets

  • Autores: Jorge J. López Vázquez Árbol académico, José Enrique Romero García
  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 27, Nº. 2, 2003, págs. 139-152
  • Idioma: inglés
  • Títulos paralelos:
    • Cooperación parcial y conjuntos convexos
  • Enlaces
  • Resumen
    • We consider games of transferable utility, those that deal with partial cooperation situations, made up of coalition systems, in which every unit coalition is feasible and every coalition of players can be expressed as a disjoint union of maximal feasible coalitions. These systems are named partition systems and cause restricted games. To sum up, we study feasible coalition systems delined by a partial order designed for a set of players and we analyze the characteristics of a feasible coalition system developed from a family of convex sets.

  • Referencias bibliográficas
    • Bergantiños, G., Carreras, F. and Garcı́a-Jurado, I. (1993). Cooperation when some players are incompatible. ZOR-Methods and Models of...
    • Bilbao, J. M., Fernández, J., Jiménez, N. and López, J. (2000). Voting power in the European Union enlargement. European Journal of...
    • Bilbao, J. M., Fernández, J. and López, J. (2003). Computing power indices in weighted multiple majority games.Mathematical Social Science....
    • Birkhoff, G. and Bennett, M. K. (1985). The convexity lattice of a poset. Order, 2, 223-242.
    • Borm, P., Owen, G. and Tijs, S. (1992). The position value for communication situations. SIAM Journal on Discrete Mathematics, 5, 305-320.
    • Borm, P., Nouweland, A., Owen, G. and Tijs, S. (1993). Cost allocation and communication. Naval Research Logistics, 40, 733-744.
    • Carreras, F. (1991). Restriction of simple games. Mathematical Social Sciences, 21, 245-260.
    • Edelman, P. H. and Jamison, R. E. (1985). The theory of convex geometries. Geometriæ Dedicata, 19, 247-270.
    • Edelman, P. H. (1996). A note on voting, preprint.
    • Faigle, U. (1989). Cores of games with restricted cooperation. ZOR-Methods and Models of Operations Research, 33, 405-402.
    • Myerson, R. B. (1977). Graphs and cooperation in games. Mathematics of Operations Research, 2, 225- 229.
    • Owen, G. (1986). Values of graph-restricted games. SIAM Journal of Algebraic and Discrete Methods, 7, 210-220.
    • Stanley, R. P. (1986). Enumerative Combinatorics, vol. I, Wadsworth.
    • Tijs, S. and Otten, G. (1993). Compromise values in cooperative game theory. TOP (Trabajos de Investigación Operativa), 1, 1-51.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno