Ir al contenido

Documat


Modelling multivariate, overdispersed count data with correlated and non-normal heterogeneity effects

  • Autores: Iraj Kazemi, Fatemeh Hassanzade
  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 44, Nº. 2, 2020, págs. 335-356
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Mixed Poisson models are most relevant to the analysis of longitudinal count data in various disciplines. A conventional specification of such models relies on the normality of unobserved heterogeneity effects. In practice, such an assumption may be invalid, and non-normal cases are appealing. In this paper, we propose a modelling strategy by allowing the vector of effects to follow the multivariate skew-normal distribution. It can produce dependence between the correlated longitudinal counts by imposing several structures of mixing priors. In a Bayesian setting, the estimation process proceeds by sampling variants from the posterior distributions. We highlight the usefulness of our approach by conducting a simulation study and analysing two real-life data sets taken from the German Socioeconomic Panel and the US Centers for Disease Control and Prevention. By a comparative study, we indicate that the new approach can produce more reliable results compared to traditional mixed models to fit correlated count data

  • Referencias bibliográficas
    • Albert, J. H. and Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association...
    • Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian Journal of Statistics 12(2), 171-178.
    • Azzalini, A. and Dalla Valle, A. (1996). The multivariate skew-normal distribution. Biometrika 83(4),715- 726.
    • Balakrishnan, N. and Peng, Y. (2006). Generalized gamma frailty model. Statistics in Medicine 25(16),2797-2816.
    • Bulmer, M.G. (1974). On fitting the Poisson log-normal distribution to species-abundance data. Biometrics 30(1),101-110.
    • Cameron, A.C. and Trivedi, P.K. (2013). Regression Analysis of Count Data. Cambridge University Press, Cambridge.
    • Chib, S. and Greenberg, E. (1995). Understanding the Metropolis-Hastings algorithm. The American Statistician 49(4),327-335.
    • Chib, S. and Winkelmann, R. (2001). Markov chain Monte Carlo analysis of correlated count data. Journal of Business and Economic Statistics...
    • Davis, R.A., Dunsmuir, W.T. and Wang, Y. (2000). On autocorrelation in a Poisson regression model. Biometrika 87(3),491-505.
    • Davis, R.A. and Wu, R.A. (2009). A negative binomial model for time series of counts. Biometrika 96(3),735-749.
    • El-Basyouny, K. and Sayed, T. (2009). Collision prediction models using multivariate Poisson-lognormal regression. Accident Analysis and Prevention...
    • Farrell, P.J., MacGibbon, P. and Tomberlin, T.J. (2007). A hierarchical Bayes approach to estimation and prediction for time series of counts....
    • Fokianos, K. and Fried, R. (2012). Interventions in log-linear Poisson autoregression. Statistical Modelling 12(4),299-322.
    • Gilks, W.R. and Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling. Journal of the Royal Statistical Society, Series C(Applied...
    • Gonzales-Barron, U. and Butler, F. (2011). A comparison between the discrete Poisson-gamma and Poissonlognormal distributions to characterise...
    • Guo, J.Q. and Trivedi, P.K. (2002). Flexible parametric models for long-tailed patent count distributions. Oxford Bulletin of Economics and...
    • Holgate, P. (1970). The modality of some compound Poisson distributions. Biometrika 57(3),666-667.
    • Izsák, R. (2008). Maximum likelihood fitting of the Poisson lognormal distribution. Environmental and Ecological Statistics 15(2),143-156.
    • Kang, J. and Lee, S. (2014). Parameter change test for Poisson autoregressive models. Scandinavian Journal of Statistics 41(4),1136-1152.
    • Karlis, D. and Xekalaki, E. (2005). Mixed Poisson distributions. International Statistical Review 73(1),35- 58.
    • Kuba, M. and Panholzer, A. (2016). On moment sequences and mixed Poisson distributions. Probability Surveys 13,89-155.
    • Lunn, D., Spiegelhalter, D., Thomas, A. and Best, N. (2009). The BUGS project, Evolution, critique and future directions. Statistics in Medicine...
    • Miller, G. (2007). Statistical Modeling of Poisson/Log-Normal Data. Radiation Protection Dosimetry Advance Access Published January 124(2),1-9.
    • Molenberghs, G., Verbeke, G. and Demétrio, C.G. (2007). An extended random-effects approach to modelling repeated, over-dispersed count...
    • Montesinos-López, O.A., Montesinos-López, A., Crossa, J., Toledo, F.H., Montesinos-López, J.C., Singh, P., Juliana, p. and Salinas-Ruiz,...
    • Nadarajah, S. and Kotz, S. (2006a). Compound mixed Poisson distributions I. Scandinavian Actuarial Journal 3,141-162.
    • Nadarajah, S. and Kotz, S. (2006b). Compound mixed Poisson distributions II. Scandinavian Actuarial Journal 3,163-181.
    • Oh, M.S. and Lim, Y.B. (2001). Bayesian analysis of time series Poisson data. Journal of Applied Statistics 28(2),259-271.
    • Rabe-Hesketh, S. and Skrondal, A. (2012). Multilevel and Longitudinal Modeling Using Stata, Volume II: Categorical Responses, Counts, and...
    • Rizzato, F.B., Leandro, R.A., Demétrio, C.G. and Molenberghs, G. (2016). A Bayesian approach to analyse overdispersed longitudinal count...
    • Sahu, S.K., Dey, D.K. and Branco, M. (2003). A new class of multivariate distributions with applications to Bayesian regression models. The...
    • Van Ophem, H. (2011). The frequency of visiting a doctor, is the decision to go independent of the frequency?. Journal of Applied Econometrics...
    • Williams, M.S. and Ebel, E.D. (2012). Methods for fitting the Poisson-lognormal distribution to microbial testing data. Food Control 27(1),73-80.
    • Winkelmann, R. (2004). Health care reform and the number of doctor visits an econometric analysis. Journal of Applied Econometrics 19(4),455-472.
    • Wu, H., Deng, X. and Ramakrishnan, N. (2018). Sparse estimation of multivariate Poisson log-normal models from count data. Statistical Analysis...
    • Zeger, S.L. (1988). A regression model for time series of counts. Biometrika 75(4),621-629.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno