Ir al contenido

Documat


Persistence of Degenerate Lower Dimensional Invariant Tori in Reversible Systems with Bruno Non-degeneracy Conditions

  • Yang, Xiaomei [1] ; Xu, Junxiang [1]
    1. [1] Southeast University

      Southeast University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 20, Nº 1, 2021
  • Idioma: inglés
  • DOI: 10.1007/s12346-020-00439-5
  • Enlaces
  • Resumen
    • In this paper we consider a class of degenerate reversible systems with Bruno non-degeneracy conditions, and prove the persistence of a lower dimensional invariant torus, whose frequency vector is only a small dilation of the prescribed one.

  • Referencias bibliográficas
    • 1. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1980)
    • 2. Arnold, V.I.: Reversible systems. In: Nonlinear and Turbulent Processes in Physics, vol. 3, Kiev, 1983. Harwood Academic, Chur, pp. 1161–1174...
    • 3. Bruno, A.D.: Analytic form of differential equations. Trans. Moscow Math. Soc. 25, 131–288 (1971)
    • 4. Bruno, A.D.: Analytic form of differential equations. Trans. Moscow Math. Soc. 26, 199–239 (1972)
    • 5. Broer, H.W., Huitema, G.B.: A proof of the isoenergetic KAM-theorem from the “ordinary” one. J. Differ. Equ. 90, 52–60 (1991)
    • 6. Broer, H.W., Huitema, G.B., Sevryuk, M.B.: Quasi-periodic motions in families of Dynamical Systems, Order amidst chaos. Lecture Notes in...
    • 7. Broer, H.W., Ciocci, M.C., Hanßmann, H., Vanderbauwhede, A.: Quasi-periodic stability of normally resonant tori. Phys. D 238, 309–318 (2009)
    • 8. Buzzi, C.A., Teixeira, M.A., Yang, J.: Hopf-zero bifurcations of reversible vector fields. Nonlinearity 14, 623–638 (2001)
    • 9. Buzzi, C.A., Llibre, J., Medrado, J.C.: Periodic orbits for a class of reversible quadratic vector field on R3. J. Math. Anal. Appl. 335,...
    • 10. Corsi, L., Gentile, G.: Resonant tori of arbitrary codimension for quasi-periodically forced systems. Nonlinear Differ. Equ. Appl. 24:1,...
    • 11. Gentile, G.: Degenerate lower-dimensional tori under the Bryuno condition. Ergod. Th. Dynam. Syst. 27(2), 427–457 (2007)
    • 12. Hanßmann, H.: Quasi-periodic bifurcations in reversible systems. Regul. Chaotic Dyn. 16, 51–60 (2011)
    • 13. Hanßmann, H., Si, J.-G.: Quasi-periodic solutions and stability of the equilibrium for quasi-periodically forced planar reversible and...
    • 14. Hu, S.-Q., Liu, B.: Degenerate lower dimensional invariant tori in reversible system. Discrete Contin. Dyn. Syst. 38, 3735–3763 (2018)
    • 15. Hu, S.-Q., Liu, B.: Completely degenerate lower-dimensional invariant tori for Hamiltonian system. J. Differ. Equ. 266(11), 7459–7480...
    • 16. Lamb, J.S., Wulff, C.: Reversible relative periodic orbits. J. Differ. Equ. 178, 60–100 (2002)
    • 17. Lamb, J.S., Stenkin, O.V.: Newhouse regions for reversible systems with infinitely many stable, unstable and elliptic periodic orbits....
    • 18. Liu, B.: On lower dimensional invariant tori in reversible systems. J. Differ. Equ. 176(1), 158–194 (2001)
    • 19. Lu, X., Xu, J.-X.: Invariant tori with prescribed frequency for nearly integrable hamiltonian systems. J. Math. Phys. 55, 082702 (2014)
    • 20. Moser, J.: Convergent series expansions for quasi-periodic motions. Math. Ann. 169(1), 136–176 (1967)
    • 21. Moser, J.: Stable and random motions in dynamical systems. With special emphasis on celestial mechanics. Ann. Math. Stud. 77 (1973)
    • 22. Matveyev, M.V.: Reversible systems with first integrals. Time-reversal symmetry in dynamical systems. Phys. D 112, 148–157 (1998)
    • 23. Parasyuk, I.O.: Conservation of quasiperiodic motions of reversible multifrequency systems. Dokl. Akad. Nauk Ukrain. SSR Ser. A 85, 19–22...
    • 24. Rüssmann, H.: Invariant tori in non-degenerate nearly integrable Hamiltonian systems. Regul. Chaotic Dyn. 6(2), 119–204 (2001)
    • 25. Rerikh, K.V.: Non-algebraic integrability of the Chew-Low reversible dynamical system of the Cremona type and the relation with the 7th...
    • 26. Sevryuk, M.B.: Reversible systems. Lecture Notes in Mathematics, vol. 1211. Springer, Berlin (1986)
    • 27. Sevryuk, M.B.: The iteration–approximation decoupling in the reversible KAM theory. Chaos 5(3), 552–565 (1995)
    • 28. Sevryuk, M.B.: Partial preservation of frequencies in KAM theory. Nonlinearity 19(5), 1099–1140 (2006)
    • 29. Teixeira, M.A.: Singularities of reversible vector fields. Phys. D 100, 101–118 (1997)
    • 30. Tkhai, V.N.: Reversibility of mechanical systems. J. Appl. Math. Mech. 55(4), 461–468 (1991)
    • 31. Wang, X.-C., Xu, J.-X., Zhang, D.-F.: On the persistence of degenerate lower-dimensional tori in reversible systems. Ergod. Th. Dynam....
    • 32. Witelski, T.P., Cohen, D.S.: Perturbed reversible systems. Phys. Lett. A 207, 83–86 (1995)
    • 33. Wei, B.: Perturbations of lower dimensional tori in the resonant zone for reversible systems. J. Math. Anal. Appl. 253, 558–577 (2001)
    • 34. Xu, J.-X.: Normal form of reversible systems and persistence of lower dimensional tori under weaker nonresonance conditions. SIAM J. Math....
    • 35. Xu, J.-X.: Persistence of hyperbolic-type degenerate lower-dimensional invariant tori with prescribed frequencies in hamiltonian systems....
    • 36. Xu, J.-X., You, J.-G.: Persistence of degenerate lower dimensional invariant tori with prescribed frequencies in Hamiltonian systems....
    • 37. Xu, J.-X., You, J.-G., Qiu, Q.-J.: Invariant tori for nearly integrable Hamiltonian systems with degeneracy. Math. Z. 226(3), 375–387...
    • 38. Yang, X.-M., Xu, J.-X., Jiang, S.-J.: Persistence of degenerate lower dimensional invariant tori with prescribed frequencies in reversible...
    • 39. You, J.-G.: A KAM theorem for hyperbolic-type degenerate lower dimensional tori in Hamiltonian systems. Commun. Math. Phys. 192(1), 145–168...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno