Ir al contenido

Documat


Travelling Wave Solutions of the General Regularized Long Wave Equation

  • Zheng, Hang [3] ; Xia, Yonghui [1] ; Bai, Yuzhen [2] ; Wu, Luoyi [4]
    1. [1] Zhejiang Normal University

      Zhejiang Normal University

      China

    2. [2] Qufu Normal University

      Qufu Normal University

      China

    3. [3] Zhejiang Normal University & Wuyi University
    4. [4] Wuyi University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 20, Nº 1, 2021
  • Idioma: inglés
  • DOI: 10.1007/s12346-020-00442-w
  • Enlaces
  • Resumen
    • In this paper, we study the bifurcation and exact travelling wave solutions of the general regularized long wave (GRLW) equation. Based on the bifurcation theory of dynamical system, the various exact solutions are obtained. We consider the cases:

      p = 2n + 1 and p = 2n respectively. It is shown that GRLW equation has extra kink and anti-kink wave solutions when p = 2n + 1, while it’s not for p = 2n.

  • Referencias bibliográficas
    • 1. Benjamin, T., Bona, J., Mahony, J.: Model equations for long waves in nonlinear dispersive systems. Philos. Trans. R. Soc. Lond. A Math....
    • 2. Byrd, P., Friedman, M.: Handbook of Elliptic Integrals for Engineers and Scientists. Springer, New York (1971)
    • 3. Bona, J., McKinney, W., Restrepo, J.: Stable and unstable solitary-wave solutions of the generalized regularized long-wave equation. J....
    • 4. Chen, J., Luan, Z., Zhou, Q., Alzahrani, A., Biswas, A., Liu, W.: Periodic soliton interactions for higher-order nonlinear Schrödinger...
    • 5. Dag, I.: Least squares quadratic B-splines finite element method for the regularized long wave equation. Comput. Methods Appl. Mech. Eng....
    • 6. Dag, I., Saka, B., Irk, D.: Application of cubic B-splines for numerical solution of the RLW equation. Appl. Math. Comput. 195, 373–389...
    • 7. Du, Z., Li, J., Li, X.: The existence of solitary wave solutions of delayed Camassa–Holm equation via a geometric approach. J. Funct. Anal....
    • 8. Eslami, M.: Exact traveling wave solutions to the fractional coupled nonlinear Schrödinger equations. Appl. Math. Comput. 285, 141–148...
    • 9. Eslami, M., Rezazadeh, H.: The first integral method for Wu–Zhang system with conformable timefractional derivative. Calcolo 53, 475–485...
    • 10. Feng, B., Maruno, K., Ohta, Y.: A two-component generalization of the reduced Ostrovsky equation and its integrable semi-discrete analogue....
    • 11. He, B., Meng, Q.: Bifurcations and new exact travelling wave solutions for the Gerdjikov–Ivanov equation. Commun. Nonlinear Sci. Numer....
    • 12. He, B., Rui,W., Long, Y.: New exact double periodic wave and complex wave solutions for a generalized sinh-Gordon equation. Appl. Math....
    • 13. Gardner, L., Gardner, G., Dag, I.: AB-spline finite element method for the regularized long wave equation. Commun. Numer. Methods Eng....
    • 14. Gardner, L., Gardner, G., Dogan, A.: A least squares finite element scheme for the RLW equation. Commun. Numer. Methods Eng. 12, 795–804...
    • 15. Guan, X., Liu, W., Zhou, Q., et al.: Darboux transformation and analytic solutions for a generalized super-NLS-mKdV equation. Nonlinear...
    • 16. García-López, C., Ramos, J.: Solitary waves generated by bell-shaped initial conditions in the inviscid and viscous GRLW equations. Appl....
    • 17. Karakoc, S., Geyikli, T.: Petrov–Galerkin finite element method for solving the MRLW equation. Math. Sci. 7, 25–34 (2013)
    • 18. Korkmaz, A., Hepson, O., et al.: Sine-Gordon expansion method for exact solutions to conformable time fractional equations in RLW-class....
    • 19. Khalifa, A., Raslan, K., Alzubaidi, H.: A finite difference scheme for the MRLW and solitary wave interactions. Appl. Math. Comput. 189,...
    • 20. Khalifa, A., Raslan, K., Alzubaidi, H.: A collocation method with cubic B-splines for solving the MRLW equation. J. Comput. Appl. Math....
    • 21. Kaya, D., El-Sayed, S.: An application of the decomposition method for the generalized KdV and RLW equations. Chaos Solitons Fract. 17,...
    • 22. Karakoc, S., Geyikli, T.: Petrov–Galerkin finite element method for solving the MRLW equation. Math. Sci. 7(1), 25 (2013)
    • 23. Li, J.: Singular Nonlinear Travelling Wave Equations: Bifurcations and Exact Solutions. Science, Beijing (2013)
    • 24. Liu, H., Yue, C.: Lie symmetries, integrable properties and exact solutions to the variable-coefficient nonlinear evolution equations....
    • 25. Liu, S., Zhou, Q., Biswas, A., et al.: Phase-shift controlling of three solitons in dispersion-decreasing fibers. Nonlinear Dyn. 98, 395–401...
    • 26. Mirzazadeh, M., Eslami, M., Biswas, A.: Soliton solutions of the generalized Klein–Gordon equation by using G’/G-expansion method. Comput....
    • 27. Mirzazadeh, M., Eslami, M., Biswas, A.: 1-Soliton solution of KdV6 equation. Nonlinear Dyn. 80(1–2), 387–396 (2015)
    • 28. Mokhtari, R., Mohammadi, M.: Numerical solution of GRLW equation using Sinc-collocation method. Comput. Phys. Commun. 181, 1266–1274 (2010)
    • 29. Raslan, K.: A computational method for the regularized long wave (RLW) equation. Appl. Math. Comput. 176, 1101–1118 (2005)
    • 30. Roshan, T.: A Petrov–Galerkin method for solving the generalized regularized long-wave (GRLW) equation. Comput. Math. Appl. 63, 943–956...
    • 31. Soliman, A.: Numerical simulation of the generalized regularized long wave equation by He’s variational iteration method. Math. Comput....
    • 32. Soliman, A., Hussien, M.: Collocation solution for RLW equation with septic splines. Appl. Math. Comput. 161, 623–636 (2005)
    • 33. Soliman, A., Raslan, K.: Collocation method using quadratic B-spline for the RLW equation. Int. J. Comput. Math. 78, 399–412 (2001)
    • 34. Song, Y., Tang, X.: Stability, steady-state bifurcations, and turing patterns in a predator–prey model with herd behavior and prey-taxis....
    • 35. Sun, X., Huang, W., Cai, J.: Coexistence of the solitary and periodic waves in convecting shallow water fluid. Nonlinear Anal-Real. 53,...
    • 36. Sun, X., Yu, P.: Periodic traveling waves in a generalized BBM equation with weak backward diffusion and dissipation terms. Discrete Contin....
    • 37. Wazwaz, A.: The tanh method for travelling wave solutions to the Zhiber–Shabat equation and other related equations. Commun. Nonlinear...
    • 38. Wang, J., Bai, F., Cheng, Y.: A meshless method for the nonlinear generalized regularized long wave equation. Chin. Phys. B. 20(3), 030206-1/8...
    • 39. Xia, Y., Grasic, M., Huang, W., Romanovski, V.: Limit cycles in a model of olfactory sensory neurons. Int. J. Bifurc. Chaos 29, 1950038...
    • 40. Yang, X., Huo, D., Hong, X.: Periodic transmission and control of optical solitons in optical fibers. Optik 216, 164752 (2020)
    • 41. Zhang, B., Xia, Y., Zhu, W., Bai, Y.: Explicit exact traveling wave solutions and bifurcations of the generalized combined double sinh–cosh-Gordon...
    • 42. Zheng, L., Yong, L., Ying, Z., Liang, Z.: Exact solutions of Gerdjikov–Ivanov equation. Acta Phys. Sin. 51, 2031–2034 (2008)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno