Ir al contenido

Documat


Two Action-Angle Surprises on the Sphere

  • Bates, Larry [1] ; Cushman, Richard [1]
    1. [1] University of Calgary

      University of Calgary

      Canadá

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 20, Nº 1, 2021
  • Idioma: inglés
  • DOI: 10.1007/s12346-020-00438-6
  • Enlaces
  • Resumen
    • The linearized Poincaré map of a periodic orbit of a completely integrable Hamiltonian system is examined in the light of the finer description we get by using coordinate changes in the Lagrangian odd symplectic group. In particular, we obtain non-eigenvalue invariants called moduli. These invariants are surprisingly subtle to calculate even in the case of the geodesic flow on a 2-sphere, and reveal dynamic-geometric information that is otherwise symplectically invisible.

  • Referencias bibliográficas
    • 1. Burgoyne, N., Cushman, R.: Conjugacy classes in linear groups. J. Algebra 44, 339–362 (1977)
    • 2. Bates, L., Cushman, R.: The odd symplectic group in geometry. Int. J. Pure Appl. Math. 17, 1–8 (2004)
    • 3. Bates, L., Cushman, R.: Applications of the odd symplectic group to Hamiltonian systems. Reg. Chaotic Dyn. 17, 2–16 (2011)
    • 4. Do Carmo, M.: Differential geometry of curves and surfaces. Prentice-Hall Inc, Englewood Cliffs, N.J (1976)
    • 5. Stoker, J.: Differential Geometry. Wiley, New York (1969)
    • 6. Cushman, R.: Adjoint orbits of the odd symplectic group. Reg. Chaotic Dyn. 12, 744–753 (2007)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno