Ir al contenido

Documat


A Kakeya maximal function estimate in four dimensions using planebrushe

  • Nets Hawk Katz [1] ; Joshua Zahl [2]
    1. [1] California Institute of Technology

      California Institute of Technology

      Estados Unidos

    2. [2] University of British Columbia

      University of British Columbia

      Canadá

  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 37, Nº 1, 2021, págs. 317-359
  • Idioma: inglés
  • DOI: 10.4171/rmi/1219
  • Enlaces
  • Resumen
    • We obtain an improved Kakeya maximal function estimate in R4 using a new geometric argument called the planebrush. A planebrush is a higher dimensional analogue of Wolff’s hairbrush, which gives effective control on the size of Besicovitch sets when the lines through a typical point concentrate into a plane. When Besicovitch sets do not have this property, the existing trilinear estimates of Guth–Zahl can be used to bound the size of a Besicovitch set. In particular, we establish a maximal function estimate in R4 at dimension 3.059. As a consequence, every Besicovitch set in R4 must have Hausdorff dimension at least 3.059.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno