Ir al contenido

Documat


Non-cutoff Boltzmann equation with polynomial decay perturbations

  • Ricardo Alonso [4] ; Yoshinori Morimoto [1] ; Weiran Sun [2] ; Tong Yang [3]
    1. [1] Kyoto University

      Kyoto University

      Kamigyō-ku, Japón

    2. [2] Simon Fraser University

      Simon Fraser University

      Canadá

    3. [3] City University of Hong Kong

      City University of Hong Kong

      RAE de Hong Kong (China)

    4. [4] Pontifícia Universidade Católica (PUC) do Rio de Janeiro
  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 37, Nº 1, 2021, págs. 189-292
  • Idioma: inglés
  • DOI: 10.4171/rmi/1206
  • Enlaces
  • Resumen
    • The Boltzmann equation without the angular cutoff is considered when the initial data is a small perturbation of a global Maxwellian and decays algebraically in the velocity variable. We obtain a well-posedness theory in the perturbative framework for both mild and strong angular singularities. The three main ingredients in the proof are the moment propagation, the spectral gap of the linearized operator, and the regularizing effect of the linearized operator when the initial data is in a Sobolev space with a negative index. A carefully designed pseudo-differential operator plays a central role in capturing the regularizing effect. In addition, some intrinsic symmetry with respect to the collision operator and an intrinsic functional in the coercivity estimate are essentially used in the commutator estimates for the collision operator with velocity weights.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno