Ir al contenido

Documat


Network Modeling in Biology: Statistical Methods for Gene and Brain Networks

  • Wang, Y. X. Rachel [1] ; Li, Lexin [2] ; Li, Jingyi Jessica [2] ; Huang, Haiyan [2]
    1. [1] University of Sydney

      University of Sydney

      Australia

    2. [2] University of California System

      University of California System

      Estados Unidos

  • Localización: Statistical science, ISSN 0883-4237, Vol. 36, Nº. 1, 2021, págs. 89-108
  • Idioma: inglés
  • DOI: 10.1214/20-STS792
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • The rise of network data in many different domains has offered researchers new insights into the problem of modeling complex systems and propelled the development of numerous innovative statistical methodologies and computational tools. In this paper, we primarily focus on two types of biological networks, gene networks and brain networks, where statistical network modeling has found both fruitful and challenging applications. Unlike other network examples such as social networks where network edges can be directly observed, both gene and brain networks require careful estimation of edges using measured data as a first step. We provide a discussion on existing statistical and computational methods for edge estimation and subsequent statistical inference problems in these two types of biological networks.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno