Ir al contenido

Documat


The dimension of attractors of nonautonomous partial differential equations

  • Autores: José Antonio Langa Rosado Árbol académico, Tomás Caraballo Garrido Árbol académico
  • Localización: Anziam journal: The Australian & New Zealand industrial and applied mahtematics journal, ISSN 1446-1811, Vol. 45, Nº 2, 2003, págs. 207-222
  • Idioma: inglés
  • DOI: 10.1017/s1446181100013274
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • The concept of nonautonomous (or cocycle) attractors has become a proper tool for the study of the asymptotic behaviour of general nonautonomous partial differential equations. This is a time-dependent family of compact sets, invariant for the associated process and attracting "from - infinite ''. In general, the concept is rather different to the classical global attractor for autonomous dynamical systems. We prove a general result on the finite fractal dimensionality of each compact set of this family. In this way, we generalise some previous results of Chepyzhov and Vishik. Our results are also applied to differential equations with a nonlinear term having polynomial growth at most.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno