Ir al contenido

Documat


The portfolio selection problem: Hybrid approach to solve the mean-variance rational model

  • Senhaji, K. [1] ; Ettaouil, M. [1]
    1. [1] Sidi Mohamed Ben Abdellah University

      Sidi Mohamed Ben Abdellah University

      Fes-Medina, Marruecos

  • Localización: BEIO, Boletín de Estadística e Investigación Operativa, ISSN 1889-3805, Vol. 36, Nº. 1, 2020, págs. 25-40
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we propose to complete the Markowitz portfolio problem by a new rational constraint. Besides, the mean goal of this work is to use The Continuous Hopfield Networks (CHN) and the genetic algorithm to solve the proposed model. As know, (CHN) is a robust neural tool, which was widely used to solve combinatorial problems. For that, we propose an adequate energy function. The equilibrium points of our neural network represent the local’s minimums of this energy function. These solutions are not enough good in the general case. As the CHN is fast, we start from several initial points to construct a set of local solutions, this litter is given as the initial population to the genetic algorithm to construct better solutions. As it is showing in the experimental results, the proposed hybrid approach allows improving largely the CHN portfolio profile for the rational mean-variance model. © 2020 SEIO.

  • Referencias bibliográficas
    • [1] Markowitz, H. (1952). Portfolio selection.Journal of finance,7(1), 77-91.
    • [2] Fernandez, A., Gomez, S., and Gomez, S. (2007). Portfolio selection usingneural networks.Computers and Operations Research,34(4):1177–1191.Doi:https://doi.org/10.1016/j.cor.2005.06.017.
    • [3] Senhaji K., El Moutaouakil K., Ettaouil M. (2019). A Robust Neural Net-work Approach for the Portfolio Selection Problem Basing on New...
    • [4] Sefiane, S., Benbouziane, M., and Benbouziane, M. (2012). Portfolio se-lection using genetic algorithm.Journal of Applied Finance and...
    • [5] Zarranezhad, M., Hajiabad, R. Y., Fakherinia, M., and Fakherinia, M.(2015). Evaluation of particle swarm algorithm and genetic algorithms...
    • [6] Mamanis, G. (2017). Portfolio Optimization with Metaheuristics.Financeand Market,2(2). DOI:http://dx.doi.org/10.18686/fm.v2i2.1048
    • [7] Zarranezhad, M., Hajiabad, R. Y., Fakherinia, M., and Fakherinia, M.(2015). Evaluation of particle swarm algorithm and genetic algorithms...
    • [8] Senhaji, K., El Moutaouakil, K., Ettaouil, M., and Ettaouil, M. (2016).Portfolio selection problem: New multicriteria approach for the...
    • [9] Davies, R. J., Kat, H. M., and Lu, S. (2016). Fund of hedgefunds portfolio selection: A multiple-objective approach.In Deriva-tives and...
    • [10] Gonz´alez, E. V. (2015). Soft Computing approaches to portfolio selection.BEIO, Bolet´ın de Estad´ıstica e Investigaci´on Operativa,31(1),...
    • [11] Hopfield, J. J., Tank, D. W., and Tank, D. W. (1985). “Neural”com-putation of decisions in optimization problems. Biological cybernetics,52(3):141–152.
    • [12] Holland, J. H. (1992). Adaptation in natural and artificial systems: anintroductory analysis with applications to biology, control, and...
    • [13] Goldberg, D. E. (1989).Genetic Algorithms in Search, Optimization, andMachine Learning. Reading, MA: Addison-Wesley.
    • [14] Chang, T. J., Yang, S. C., and Chang, K. J. (2009). Portfolio optimizationproblems in different risk measures using genetic algorithm.Expert...
    • [15] Jebari, K., & Madiafi, M. (2013). Selection methods for genetic algorithms.International Journal of Emerging Sciences,3(4), 333-344.
    • [16] Hingee, K., & Hutter, M. (2008, June). Equivalence of probabilistic tour-nament and polynomial ranking selection.In 2008 IEEE Congress...
    • [17] Poon, P. W., & Carter, J. N. (1995). Genetic algorithm crossover operatorsfor ordering applications.Computers & Operations Research,22(1),...
    • [18] Yahoo Finance. Financial Data athttps://fr.finance.yahoo.com/.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno