Ir al contenido

Documat


Ergodicities of Infinite Dimensional Nonlinear Stochastic Operators

  • Mukhamedov Farrukh [1] ; Khakimov Otabek [3] ; Embong, Ahmad Fadillah [2]
    1. [1] United Arab Emirates University

      United Arab Emirates University

      Emiratos Árabes Unidos

    2. [2] University of Technology Malaysia

      University of Technology Malaysia

      Malasia

    3. [3] Institute of Mathematics (Tashkent, Uzbekistan)
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 19, Nº 3, 2020
  • Idioma: inglés
  • DOI: 10.1007/s12346-020-00415-z
  • Enlaces
  • Resumen
    • In the present paper, we introduce two classes L+ and L- of nonlinear stochastic operators acting on the simplex of ℓ1-space. For each operator V from these classes, we study omega limiting sets ωV and ωV(w) with respect to ℓ1-norm and pointwise convergence, respectively. As a consequence of the investigation, we establish that every operator from the introduced classes is weak ergodic. However, if V belongs to L-, then it is not ergodic (w.r.t ℓ1-norm) while V is weak ergodic.

  • Referencias bibliográficas
    • 1. Akin, E., Losert, V.: Evolutionary dynamics of zero-sum games. J. Math. Biol. 20, 231–258 (1984)
    • 2. Badocha, M., Bartoszek, W.: Quadratic stochastic operators on Banach lattices. Positivity 22, 477–492 (2018)
    • 3. Bartoszek, K., Pulka, M.: Quadratic stochastic operators as a tool in modelling the dynamics of a distribution of a population trait. In:...
    • 4. Bartoszek, K., Pulka, M.: Asymptotic properties of quadratic stochastic operators acting on the L1- space. Nonlinear Anal. Theory Methods...
    • 5. Chauvet, E., Paullet, J.E., Privite, J.P., Walls, Z.: A Lotka–Volterra three-species food chain. Math Mag. 75, 243–255 (2002)
    • 6. Ganikhodzhaev, R.N.: Quadratic stochastic operators, Lyapunov functions, and tournaments. Russ. Acad. Sci. Sbornik Math. 76, 489–506 (1993)
    • 7. Ganikhodzhaev, R., Mukhamedov, F., Rozikov, U.: Quadratic stochastic operators and processes: results and open problems. Infin. Dimens....
    • 8. Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge Univ. Press, Cambridge (1998)
    • 9. Jamilov, U.U.: Quadratic stochastic operators corresponding to graphs. Lobachevskii J. Math 34, 148– 151 (2013)
    • 10. Jamilov, U., Ladra, M.: Non-ergodicity of uniform quadratic stochastic operators. Qual. Theory Dyn. Syst. 15, 257–271 (2016)
    • 11. Kolokoltsov, V.N.: Nonlinear Markov Processes and Kinetic Equations. Cambridge Univ. Press, New York (2010)
    • 12. Li, W., Ng, M.K.: On the limiting probability distribution of a transition probability tensor. Linear Multilinear Algebra 62, 362–385...
    • 13. Li, C.-K., Zhang, S.: Stationary probability vectors of higher-order Markov chains. Linear Algebra Appl. 473, 114–125 (2015)
    • 14. Lyubich, Y.I.: Mathematical structures in population genetics. Springer, Berlin (1992)
    • 15. McKean, H.P.: A class of Markov processess associated with nonlinear parabolic equations. Proc. Natl. Acad. Sci. USA 56, 1907–1911 (1966)
    • 16. Mukhamedov, F., Akin, H., Temir, S.: On infinite dimensional quadratic Volterra operators. J. Math. Anal. Appl. 310, 533–556 (2005)
    • 17. Mukhamedov, F., Embong, A.F.: Uniqueness of fixed points of b-bistochastic quadratic stochastic operators and associated nonhomogenous...
    • 18. Mukhamedov F., Embong A.F.: Infinite dimensional orthogonality preserving nonlinear Markov operators. Linear Multilinear Alg. https://doi.org/10.1080/03081087.2019.1607241
    • 19. Mukhamedov F., Ganikhodjaev N.: Quantum Quadratic Operators and Processes, Lect. Notes Math. 2133, Springer (2015)
    • 20. Mukhamedov, F., Khakimov, O.N., Embong, A.F.: On Surjective second order non-linear Markov operators and associated nonlinear integral...
    • 21. Mukhamedov, F., Pah, C.H., Rosli, A.: On non-ergodic Volterra cubic stochastic operators. Qual. Theor. Dyn. Syst. 18, 1225–1235 (2019)
    • 22. Mukhamedov, F., Saburov, M.: Stability and monotonicity of Lotka–Volterra type operators. Qual. Theor. Dyn. Syst. 16, 249–267 (2017)
    • 23. Nagylaki, T.: Evolution of a large population under gene conversion. Proc. Natl. Acad. Sci. USA 80, 5941–5945 (1983)
    • 24. Qi, L., Luo, Z.: Tensor Analysis: Spectral Theory and Special Tensors. SIAM, Philadelphia (2017)
    • 25. Saburov, M.: A class of nonergodic Lotka–Volterra operators. Math. Not. 97, 759–763 (2015)
    • 26. Shi, Y., Chen, G.: Chaos for discrete dynamical systems in complete metric spaces. Chaos, Solitons Fract. 22, 555–571 (2004)
    • 27. Takeuchi, Y.: Global Dynamical Properties of Lotka–Volterra Systems. World Scientific, Singapore (1996)
    • 28. Ulam, S.M.: A Collection of Mathematical Problems. Interscience Publisher, New York (1960)
    • 29. Zakharevich, M.I.: On behavior of trajectories and the ergodic hypothesis for quadratic transformations of the simplex. Russ. Math. Surv....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno