Ir al contenido

Documat


On the Universal Unfolding of Vector Fields in One Variable: A Proof of Kostov’s Theorem

  • Klimeš, Martin [1] ; Rousseau Christiane [2]
    1. [1] University of Vienna

      University of Vienna

      Innere Stadt, Austria

    2. [2] University of Montreal

      University of Montreal

      Canadá

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 19, Nº 3, 2020
  • Idioma: inglés
  • DOI: 10.1007/s12346-020-00416-y
  • Enlaces
  • Resumen
    • In this note we present variants of Kostov’s theorem on a versal deformation of a parabolic point of a complex analytic 1-dimensional vector field. First we provide a self-contained proof of Kostov’s theorem, together with a proof that this versal deformation is indeed universal. We then generalize to the real analytic and formal cases, where we show universality, and to the C∞ case, where we show that only versality is possible.

  • Referencias bibliográficas
    • 1. Arnol’d, V.I.: Geometrical Methods in the Theory of Ordinary Differential Equations, Grundlehren der Mathematischen Wissenschaften 250....
    • 2. Arnol’d, V.I., Gusein-Zade, S.M., Varchenko, A.N.: Singularities of Differentiable Maps, Vol. 1, The classification of critical points,...
    • 3. Arnol’d, V.I., Goryunov, V.V., Lyashko, O.V., Vasil’ev, V.A.: Singularity Theory II, Classification and Applications, In: Dynamical Systems...
    • 4. Golubitsky, M., Guillemin, V.: Stable Mappings and Their Singularities, Graduate Texts in Mathematics 14. Springer, Berlin (1973)
    • 5. Ilyashenko, Y., Yakovenko, S.: Lectures on Analytic Differential Equations, Graduate Studies in Mathematics 86. American Mathematical Society,...
    • 6. Klimeš, M., Rousseau, C.: Generic 2-parameter perturbations of parabolic singular points of vector fields in C. Conform. Geom. Dyn. 22,...
    • 7. Kostov, V.: Versal deformations of differential forms of degree α on the line. Funct. Anal. Appl. 18, 335–337 (1984)
    • 8. Kostov, V.: Versal deformations of differential forms of real degree on the real line. Math. USSR Izv. 37(3), 525–537 (1991)
    • 9. Malgrange, B.: The Preparation Theorem for Differentiable Functions, Differential Analysis, Bombay Colloq, pp. 203–208. Oxford University...
    • 10. Mardeši´c, P., Roussarie, R., Rousseau, C.: Modulus of analytic classification for unfoldings of generic parabolic diffeomorphisms. Mosc....
    • 11. Ribón, J.: Formal classification of unfoldings of parabolic diffeomorphisms. Ergod. Theory Dyn. Syst. 28, 1323–1365 (2008)
    • 12. Ribón, J.: Modulus of analytic classification for unfoldings of resonant diffeomorphisms. Moscow Math. J. 8, 319–395 (2008)
    • 13. Rousseau, C., Christopher, C.: Modulus of analytic classification for the generic unfolding of a codimension 1 resonant diffeomorphism...
    • 14. Rousseau, C., Teyssier, L.: Analytic moduli for unfoldings of saddle-node vector fields. Moscow Math. J. 8(3), 1–69 (2008)
    • 15. Rousseau, C.: Analytic moduli for unfoldings of germs of generic analytic diffeomorphisms with a codimension k parabolic point. Ergod....
    • 16. Teyssier, L.: Équation homologique et cycles asymptotiques d’une singularité noeud-col. Bull. Sci. Math. 126, 167–187 (2004)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno