Ir al contenido

Documat


On the existence of the Hutchinson measure for generalized iterated function systems

  • Strobin Filip [1]
    1. [1] Lodz University of Technology

      Lodz University of Technology

      Łódź, Polonia

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 19, Nº 3, 2020
  • Idioma: inglés
  • DOI: 10.1007/s12346-020-00420-2
  • Enlaces
  • Resumen
    • We prove that each generalized (in the sense of Miculescu and Mihail) IFS consisting of contractive maps generates the unique generalized Hutchinson measure. This result extends the earlier result due to Miculescu in which the assertion is proved under certain additional contractive assumptions.

  • Referencias bibliográficas
    • 1. Banakh, T., Kubi´s, W., Nowak, M., Novosad, N., Strobin, F.: Contractive function systems, their attractors and metrization. Topol. Methods...
    • 2. Barnsley, M.F.: Fractals Everywhere. Academic Press Professional, Boston (1993)
    • 3. Bogachev, V.: Measure Theory. Springer, Berlin (2007)
    • 4. Dumitru, D., Ioana, L., Sfetcu, R.C., Strobin, F.: Topological version of generalized (infinite) iterated function systems. Chaos Solitons...
    • 5. Hutchinson, J.: Fractals and self-similarity. Indiana Univ. Math. J. 30(5), 713–747 (1981)
    • 6. Jachymski, J., Jó´zwik, I.: Nonlinear contractive conditions: a comparison and related problems. Polish Acad. Sci. 77, 123–146 (2007)
    • 7. Kunze, H., La Torre, D., Mendivil, F., Vrscay, E.R.: Fractal-Based Methods in Analysis. Springer, Berlin (2012)
    • 8. Le´sniak, K., Snigireva, N., Strobin, F.: Weakly contractive iterated function systems and beyond: a manual. J. Differ. Equ. Appl. https://doi.org/10.1080/10236198.2020.1760258...
    • 9. Ma´slanka, Ł., Strobin, F.: On generalized iterated function systems defined on ∞-sum of a metric space. J. Math. Anal. Appl. 461(2),...
    • 10. Ma´slanka, Ł., Strobin, F.: Zero-dimensional compact metrizable spaces as attractors of generalized iterated function systems. Topol....
    • 11. Matkowski, J.: Integrable solutions of functional equations. Diss. Math. 127, 68 (1975)
    • 12. Miculescu, R.: Generalized iterated function systems with place dependent probabilities. Acta Appl. Math. 130(1), 135–150 (2014)
    • 13. Miculescu, R., Mihail, A.: Applications of fixed point theorems in the theory of generalized IFS. Fixed Point Theory Appl. 2008, Article...
    • 14. Miculescu, R., Mihail, A.: A Generalization of the Hutchinson Measure. Mediterr. J. Math. 6, 203–213 (2009)
    • 15. Miculescu, R., Mihail, A.: Generalized IFSs on noncompact spaces. Fixed Point Theory Appl. Volume 2010, Article ID 584215, https://doi.org/10.1155/2010/584215
    • 16. Mihail, A.: Recurrent iterated function systems. Rev. Roumaine Math. Pures Appl. 53(1), 43–53 (2008)
    • 17. Mihail, A.: The shift space for recurrent iterated function systems. Rev. Roumaine. Math. Pures Appl. 4, 339–355 (2008)
    • 18. Mihail, A.: A topological version of iterated function systems. An. ¸Stiin¸t. Univ. Al. I. Cuza, Ia¸si, (S.N.), Matematica 58, 105–120...
    • 19. Oliveira, E.: The ergodic theorem for a new kind of attractor of a GIFS. Chaos Solitons Fractals 98, 63–71 (2017)
    • 20. Secelean, N.: Invariant measure associated with a generalized countable iterated function system. Mediterr. J. Math. 11, 361–372 (2014)
    • 21. Secelean, N.: Generalized iterated function systems on the space l ∞(X). J. Math. Anal. Appl. 410(2), 847–858 (2014)
    • 22. Strobin, F.: Attractors of GIFSs that are not attractors of IFSs. J. Math. Anal. Appl. 422(1), 99–108 (2015)
    • 23. Strobin, F., Swaczyna, J.: On a certain generalisation of the iterated function system. Bull. Aust. Math. Soc. 87(1), 37–54 (2013)
    • 24. Strobin, F., Swaczyna, J.: A code space for a generalized IFS. Fixed Point Theory 17(2), 477–494 (2016)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno