Ir al contenido

Documat


Periodic Solutions of Discontinuous Duffing Equations

  • Jiang Fangfang [1]
    1. [1] Jiangnan University

      Jiangnan University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 19, Nº 3, 2020
  • Idioma: inglés
  • DOI: 10.1007/s12346-020-00428-8
  • Enlaces
  • Resumen
    • In this paper, we investigate the multiplicity problem of periodic solutions for a class of periodically forced Duffing equations allowing for discontinuities. By using a generalized form of the Poincaré–Birkhoff theorem due to Ding (Proc Am Math Soc 88:341–346, 1983), we demonstrate that the discontinuous equation has an infinite number of periodic solutions with large amplitude.

  • Referencias bibliográficas
    • 1. Capietto, A., Mawhin, J., Zanolin, F.: A continuation approach for superlinear periodic value problems. J. Differ. Equ. 88, 347–395 (1990)
    • 2. Chen, H., Li, Y.: Bifurcation and stability of periodic solutions of Duffing equations. Nonlinearity 21, 2485–2503 (2008)
    • 3. Chen, H., Xie, J.: Harmonic and subharmonic solutions of the SD oscillator. Nonlinear Dyn. 84, 2477–2486 (2016)
    • 4. Cao, Q., Wiercigroch, M., Pavlovskaia, E., et al.: Archetypal oscillator for smooth and discontinuous dynamics. Phys. Rev. E 74(4), 046218...
    • 5. Cao, Q., Wiercigroch, M., Pavlovskaia, E., et al.: Piecewise linear approach to an archetypal oscillator for smooth and discontinuous dynamics....
    • 6. Dieci, L., Lopez, L.: Sliding motion in Filippov differential systems: theoretical results and a computational approach. SIAM J. Numer....
    • 7. Ding, T., Ding, W.: Resonance problem for a class of Duffing’s equations. Chin. Ann. Math. Ser. B 6, 427–432 (1985)
    • 8. Ding, T.: Applications of Qualitative Methods of Ordinary Differential Equations. China Higher Education Press, Beijing (2004)
    • 9. Ding, T.: An infinite class of periodic solutions of periodically perturbed Duffing equations at resonance. Proc. Am. Math. Soc. 86(1),...
    • 10. Ding, T., Iannacci, R., Zanolin, F.: Existence and multiplicity results for periodic solutions of semilinear Duffing equations. J. Differ....
    • 11. Ding, T., Zanolin, F.: Periodic solutions of Duffing’s equations with superquadratic potential. J. Differ. Equ. 97, 328–378 (1992)
    • 12. Ding, W.: A generalization of the Poincaré–Birkhoff theorem. Proc. Am. Math. Soc. 88, 341–346 (1983)
    • 13. Ding, W.: Fixed points of twist mappings and periodic solutions of ordinary differential equations. Acta Math. Sin. (Chinese) 25, 227–235...
    • 14. Fonda, A., Sfecci, A.: Periodic solutions of weakly coupled superlinear systems. J. Differ. Equ. 260, 2150–2162 (2016)
    • 15. Fonda, A., Sabatini, M., Zanolin, F.: Periodic solutions of perturbed Hamiltonian systems in the plane by the use of the Poincaré–Birkhoff...
    • 16. Fonda, A., Ureña, A.J.: A Poincaré–Birkhoff theorem for Hamiltonian flows on nonconvex domains. J. Math. Pure Appl. 129, 131–152 (2019)
    • 17. Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides (Mathematics Applied). Kluwer Academic, Dordrecht (1988)
    • 18. Freire, E., Ponce, E., Torres, F.: Canonical discontinuous planar piecewise linear systems. SIAM J. Appl. Dyn. Syst. 11, 181–211 (2012)
    • 19. Jiang, F., Shi, J., Wang, Q., et al.: On the existence and uniqueness of a limit cycle for a Liénard system with a discontinuity line....
    • 20. Jiang, F., Shen, J., Zeng, Y.: Applications of the Poincaré-Birkhoff theorem to impulsive Duffing equations at resonance. Nonlinear Anal....
    • 21. Jacobowitz, H.: Periodic solutions of x + f (x, t) = 0 via the Poincaré–Birkhoff theorem. J. Differ. Equ. 20, 37–52 (1976)
    • 22. Jacobowitz, H.: The existence of the second fixed point: a correction to periodic solutions of x + f (x, t) = 0 via the Poincaré–Birkhoff...
    • 23. Kunze, M., Küpper, T., You, J.: On the application of KAM theory to discontinuous dynamical systems. J. Differ. Equ. 139(1), 1–21 (1997)
    • 24. Liu, B.: Bounded of solutions for semilinear Duffing equations. J. Differ. Equ. 145, 119–144 (1998)
    • 25. Le Calvez, P., Wang, J.: Some remarks on the Poincaré–Birkhoff theorem. Proc. Am. Math. Soc. 138, 703–715 (2010)
    • 26. Leine, R.I., van Campen, D.H., van de Vrande, B.L.: Bifurcations in nonlinear discontinuous systems. Nonlinear Dyn. 23, 105–164 (2000)
    • 27. Long, Y.: Multiple solutions of perturbed superquadratic second order Hamiltonian systems. Trans. Am. Math. Soc. 311, 749–780 (1989)
    • 28. Niu, Y., Li, X.: Periodic solutions of semilinear Duffing equations with impulsive effects. J. Math. Anal. Appl. 467(1), 349–370 (2018)
    • 29. Qian, D., Chen, L., Sun, X.: Periodic solutions of superlinear impulsive differential equations: a geometric approach. J. Differ. Equ....
    • 30. Qian, D.: Infinity of subharmonics for asymmetric Duffing equations with the Lazer–Leach–Dancer condition. J. Differ. Equ. 171, 233–250...
    • 31. Rebelo, C.: A note on the Poincaré-Birkhoff fixed point theorem and periodic solutions of planar systems. Nonlinear Anal. TMA 29, 291–311...
    • 32. Rebelo, C., Zanolin, F.: Twist conditions and periodic solutions of differential equations. Proc. Dyn. Syst. Appl. 2, 469–476 (1996)
    • 33. Rebelo, C., Zanolin, F.: Multiplicity results for periodic solutions of second order ODE’s with asymptotic nonlinearities. Trans. Am....
    • 34. Wang, C.: The lower bounds of T -periodic solutions for the forced Duffing equation. J. Math. Anal. Appl. 260, 507–516 (2001)
    • 35. Wang, Z.: Periodic solutions of the second order differential equations with Lipschitzian condition. Proc. Am. Math. Soc. 126(8), 2267–2276...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno