Ir al contenido

Documat


Small-Amplitude Limit Cycles of Certain Planar Differential Systems

  • Giné Jaume [1] ; Valls, Claudia [2]
    1. [1] Universitat de Lleida

      Universitat de Lleida

      Lérida, España

    2. [2] Universidade de Lisboa

      Universidade de Lisboa

      Socorro, Portugal

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 19, Nº 2, 2020
  • Idioma: inglés
  • DOI: 10.1007/s12346-020-00389-y
  • Enlaces
  • Resumen
    • In this work we consider the polynomial differential system x˙=-y+xf(y), y˙=x+yf(x), where f is a polynomial. This system is a certain generalization of the classical Liénard system. For that system, we solve the center problem for such family and compute the order of degeneracy of a weak focus for obtaining the maximum number of small-amplitude limit cycles.

  • Referencias bibliográficas
    • 1. Algaba, A., García, C., Giné, J.: Geometric criterium in the center problem. Mediterr. J. Math. 13(5), 2593–2611 (2016)
    • 2. Cherkas, L.A.: On the conditions for a center for certain equations of the form yy = P(x)+ Q(x)y + R(x)y2. Differ. Equ. 8,...
    • 3. Cherkas, L.A.: Estimation of the number of limit cycles of autonomous systems. Differ. Equ. 13, 529–547 (1977)
    • 4. Christopher, C.J.: An algebraic approach to the classification of centers in polynomial Liénard systems. J. Math. Anal. Appl. 229, 319–329...
    • 5. Christopher, C.J.: Estimating limit cycle bifurcations from centers, differential equations with symbolic computation. In: Trends in Mathematics,...
    • 6. Christopher, C.J., Li, C.: Limit cycles of differential equations. In: Advanced Courses in Mathematics. CRM Barcelona. Birkhäuser-Verlag,...
    • 7. Christopher, C.J., Lloyd, N.G.: Small-amplitude limit cycles in polynomial Liénard systems. NoDEA Nonlinear Differ. Eq. Appl. 3, 183–190...
    • 8. Christopher, C., Schlomiuk, D.: On general algebraic mechanisms for producing centers in polynomial differential systems. J. Fixed Point...
    • 9. Cima, A., Gasull, A., Mañosas, F.: A Note on the Lyapunov and Period Constants. Qual. Theory Dyn. Syst. 19(1), 44 (2020)
    • 10. Gasull, A.: Differential equations that can be transformed into equations of Liénard type. In: 17 Colóquio Brasileiro de Matemática (1989)
    • 11. Gasull, A., Giné, J., Grau,M.:Multiplicity of limit cycles and analyticm-solutions for planar differential systems. J. Differ. Equ. 240,...
    • 12. Gasull, A., Giné, J., Torregrosa, J.: Center problem for systems with two monomial nonlinearities. Commun. Pure Appl. Anal. 15(2), 577–598...
    • 13. Gasull, A., Giné, J., Valls, C.: Highest weak focus order for trigonometric Liénard equations. Ann. Mat. Pura Appl. (2020). https://doi.org/10.1007/s10231-019-00936-8
    • 14. Gasull, A., Torregrosa, J.: Small-amplitude limit cycles in Liénard systems via multiplicity. J. Differ. Equ. 159, 186–211 (1999)
    • 15. Giné, J.: The nondegenerate center problem and the inverse integrating factor. Bull. Sci. Math. 130(2), 152–161 (2006)
    • 16. Giné, J.: The center problem for a linear center perturbed by homogeneous polynomials. Acta Math. Sin. (Engl. Ser.) 22(6), 1613–1620 (2006)
    • 17. Giné, J., Maza, S.: The reversibility and the center problem. Nonlinear Anal. 74(2), 695–704 (2011)
    • 18. Giné, J., Valls, C.: The generalized polynomial Moon–Rand system. Nonlinear Anal. Real World Appl. 39, 411–417 (2018)
    • 19. Han, M., Tian, Y., Yu, P.: Small-amplitude limit cycles of polynomial Liénard systems. Sci. China Math. 56(8), 1543–1556 (2013)
    • 20. Jiang, J., Han, M.: Small-amplitude limit cycles of some Liénard-type systems. Nonlinear Anal. 71(12), 6373–6377 (2009)
    • 21. Lins Neto, A., de Melo, W., Pugh, C.C.: On Liénard equations. In: Proceedings of the Symposium on Geometry and Topology, Lectures Notes...
    • 22. Lloyd, N.G., Lynch, S.: Small amplitude limit cycles of certain Liénard systems. Proc. R. Soc. Lond. Ser. A 418, 199–208 (1988)
    • 23. Romanovski, V.G., Shafer, D.S.: The Center and Cyclicity Problems: Acomputational Algebra Approach. Birkhäuser, Boston (2009)
    • 24. Ye, Y.Q., Cai, S.L., Chen, L.S., Huang, K.C., Luo, D.J., Ma, Z.E., Wang, E.N., Wang, M.S., Yang, X.A.: Theory of Limit Cycles, 2nd ed.,...
    • 25. Zhang, Z.-F., Ding, T.-R., Huang, W.-Z., Dong, Z.-X.: Qualitative Theory of Differential Equations, Transl. Mathematical Monographs, vol....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno