Ir al contenido

Documat


Positive Periodic Solutions of an Eco-Epidemic Model with Crowley–Martin type Functional Response and Disease in the Prey

  • Cai, Min [1] ; Yan Shuling [1] ; Du Zengji [1]
    1. [1] Jiangsu Normal University

      Jiangsu Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 19, Nº 2, 2020
  • Idioma: inglés
  • DOI: 10.1007/s12346-020-00392-3
  • Enlaces
  • Resumen
    • In this paper, we consider an eco-epidemic predator–prey model with Crowley–Martin type functional response and disease in prey population, which is a branch of study in biomathematics which reflects both ecological and epidemiological cases simultaneously. By using Mawhin continuation theorem and constructing a suitable Lyapunov function, we obtained some sufficient conditions for the existence, uniqueness and global attractivity of a positive periodic solution for the predator–prey model.

  • Referencias bibliográficas
    • 1. Wang, M.: A diffusive logistic equation with a free boundary and sign-changing coefficient in timeperiodic environment. J. Funct. Anal....
    • 2. Du, Z., Feng, Z., Zhang, X.: Traveling wave phenomena of n-dimensional diffusive predator–prey systems. Nonlinear Anal. Real World Appl....
    • 3. KumarSasma, S., Takeuchi, Y.: Dynamics of a predator-prey system with fear and group defense. J. Math. Anal. Appl. 481, 123471 (2020)
    • 4. Wang, J., Wei, J., Shi, J.: Global bifurcation analysis and pattern formation in homogeneous diffusive predator–prey systems. J. Differ....
    • 5. Wang, C., Zhang, X.: Canards, heteroclinic and homoclinic orbits for a slow-fast predator–prey model of generalized Holling type III. J....
    • 6. Li, C., Zhu, H.: Canard cycles for predator–prey systems with Holling types of functional response. J. Differ. Equ. 254, 879–910 (2013)
    • 7. Du, Z., Feng, Z.: Existence and asymptotic behaviors of travelling waves of a modified vector-disease model. Commun. Pure Appl. Anal. 17,...
    • 8. Li, S., Wu, J.: Asymptotic behavior and stability of positive solutions to a spatially heterogeneous predator–prey system. J. Differ. Equ....
    • 9. Chen, X., Du, Z.: Existence of positive periodic solutions for a neutral delay predator–prey model with Hassell–Varley type functional...
    • 10. Upadhyay, R.K., Naji, R.K.: Dynamics of a three species food chain model with Crowley–Martin type function response. Chaos Solitons Fractals...
    • 11. Gaines, R., Mawhin, J.: Coincidence Degree and Nonlinear Differential Equations. Springer, Berlin (1977)
    • 12. Li, X., Lin, X., Liu, J.: Existence and global attractivity of positive periodic solutions for a predator–prey model with Crowley–Martin...
    • 13. Mortoja, S.G., Panja, P., Mondal, S.K.: Dynamics of a predator–prey model with nonlinear incidence rate, Crowley–Martin type functional...
    • 14. Bairagi, N., Roy, P.K., Chattopadhyay, J.: Role of infection on the stability of a predator–prey system with several response functions—a...
    • 15. Sari, N., Véron, E.A.: Periodic orbits of a seasonal SIS epidemic model with migration. J. Math. Anal. Appl. 423, 1849–1866 (2015)
    • 16. Zheng, H., Guo, L., Bai, Y., Xia, Y.: Periodic solutions of a non-autonomous predator-prey system with migrating prey and disease infection:...
    • 17. Silva, C.M.: Existence of periodic solutions for periodic eco-epidemic models with disease in the prey. J. Math. Anal. Appl. 453, 383–397...
    • 18. Zhu, Y., Wang, K.: Existence and global attractivity of positive periodic solutions for a predator–prey model with modified Leslie–Gower...
    • 19. Chen, C., Chen, F.: Conditions for global attractivity of multispecies ecological competition-predator system with Holling-type III functional...
    • 20. Gopalasamy, K.: Stability and Oscillation in Delay Equation of Population Dynamics. Kluwer Academic Publishers, Dordrecht (1992)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno