Ir al contenido

Documat


Homoclinic Solutions for Hamiltonian Systems of p-Laplacian-Like Type

  • Wan, Lili [1] ; Chen, Jing [1]
    1. [1] Southwest University of Science and Technology

      Southwest University of Science and Technology

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 19, Nº 2, 2020
  • Idioma: inglés
  • DOI: 10.1007/s12346-020-00397-y
  • Enlaces
  • Resumen
    • The existence and multiplicity of homoclinic solutions are obtained for Hamiltonian systems of p-Laplacian-like type ddt(φ(t,u˙))-a(t)|u(t)|p-2u(t)+λ∇W(t,u(t))=0 via variational methods, where a(t) is bounded and W(t, u) is under concave-convex conditions. Recent results in the literature are generalized and improved significantly.

  • Referencias bibliográficas
    • 1. Bae, J.H., Kim, Y.H.: Critical points theorems via the generalized Ekeland variational principle and its applications to equations of p(x)-Laplace...
    • 2. Choi, E.B., Kim, J.M., Kim, Y.H.: Infinitely many solutions for equations of p(x)-Laplace type with the nonlinear Neumann boundary condition....
    • 3. Coti-Zelati, V., Rabinowitz, P.H.: Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials. J. Am....
    • 4. Diaz, J.I.: Nonlinear Partial Differential Equations and Free Boundaries. Elliptic Equations, Pitman, Boston (1986)
    • 5. Hewitt, E., Stromberg, K.: Real and Abstract Analysis. Springer, New York (1965)
    • 6. Izydorek, M., Janczewska, J.: Homoclinic solutions for nonautonomous second order Hamiltonian systems with a coercive potential. J. Math....
    • 7. Lee, J.S., Kim, Y.H.: Existence and multiplicity of solutions for nonlinear elliptic equations of pLaplace type in RN . Filomat 30, 2029–2043...
    • 8. Lee, S.D., Park, K., Kim, Y.H.: Existence and multiplicity of solutions for equations involving nonhomogeneous operators of p(x)-Laplace...
    • 9. Li, X.F., Jia, J.: New homoclinic solutions for a class of second-order Hamiltonian systems with a mixed condition. Bound. Value Prob....
    • 10. Lu, S.P.: Homoclinic solutions for a nonlinear second order differential system with p-Laplacian operator. Nonlinear Anal. Real World...
    • 11. Lv, X., Lu, S.: Homoclinic solutions for ordinary p-Laplacian systems. Appl. Math. Comput. 218, 5682–5692 (2012)
    • 12. Lin, X.Y., Tang, X.H.: Infinitely many homoclinic orbits of second-order p-Laplacian systems. Taiwan. J. Math. 17(4), 1371–1393 (2013)
    • 13. Miyagaki, O.H., Santana, C.R., Vieira, R.S.: Ground states of degenerate quasilinear Schrödinger equation with vanishing potentials. Nonlinear...
    • 14. Rabinowitz, P.H., Tanaka, K.: Some results on connecting orbits for a class of Hamiltonian systems. Math. Z. 206, 473–499 (1990)
    • 15. Sun, J., Wu, T.: Multiplicity and concentration of homoclinic solutions for some second order Hamiltonian system. Nonlinear Anal. 114,...
    • 16. Shi, X.B., Zhang, Q.F., Zhang, Q.M.: Existence of homoclinic orbits for a class of p-Laplacian systems in a weighted Sobolev space. Bound....
    • 17. Tang, X.H., Xiao, L.: Homoclinic solutions for ordinary p-Laplacian systems with a coercive potential. Nonlinear Anal. 71, 1124–1132 (2009)
    • 18. Tersian, S.: On symmetric positive homoclinic solutions of semilinear p-Laplacian differential equations. 2012(121) (2012)
    • 19. Wan, L.L., Tang, C.L.: Existence and multiplicity of homoclinic orbits for second order Hamiltonian systems without (AR) condition. Discrete...
    • 20. Wu, D.L., Tang, C.L., Wu, X.P.: Homoclinic orbits for a class of second-order Hamiltonian systems with concave-convex nonlinearities....
    • 21. Wang, Z.Q., Willem, M.: Singular minimization problems. J. Differ. Equ. 161, 307–320 (2000)
    • 22. Ye, Y.Y.: Existence and multiplicity of homoclinic solutions for a second-order Hamiltonian system. Electron. J. Qual. Theory Differ....
    • 23. Yang, J., Zhang, F.B.: Infinitely many homoclinic orbits for the second-order Hamiltonian systems with super-quadratic potentials. Nonlinear...
    • 24. Yang, M.H., Han, Z.Q.: Infinitely many homoclinic solutions for second-order Hamiltonian systems with odd nonlinearities. Nonlinear Anal....
    • 25. Zou, W.M., Li, S.J.: Infinitely many homoclinic orbits for the second-order hamiltonian systems. Appl. Math. Lett. 16, 1283–1287 (2003)
    • 26. Zhang, Q.F., Tang, X.H.: Existence of homoclinic orbits for a class of asymptotically p-linear aperiodic p-Laplacian systems. App. Math....
    • 27. Zhang, X.Y.: Homoclinic orbits for a class of p-Laplacian systems with periodic assumption. Electron. J. Qual. Theory Differ. Equ. 2013(67),...
    • 28. Zhang, Z.H., Yuan, R.: Homoclinic solutions for p-Laplacian Hamiltonian systems with combined nonlinearities. Qual. Theory Dyn. Syst....
    • 29. Zeidler, E.: Nonlinear Functional Analysis and Its Applications. II/B. Springer, New York (1990)
    • 30. Zhou, Q.M.: On the superlinear problems involving p(x)-Laplacian-like operators without ARcondition. Nonlinear Anal. 12, 161–169 (2015)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno