Ir al contenido

Documat


On the Reducibility of a Class of Nonlinear Periodic Hamiltonian Systems with Degenerate Equilibrium

  • Li, Jia [1]
    1. [1] Xuzhou Institute of Technology

      Xuzhou Institute of Technology

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 19, Nº 2, 2020
  • Idioma: inglés
  • DOI: 10.1007/s12346-020-00396-z
  • Enlaces
  • Resumen
    • In this paper, we prove the existence of periodic solutions of a class of Hamiltonian systems with degenerate equilibriums under small nonlinear periodic perturbations. Actually we prove that the periodic Hamiltonian systems with small perturbations can be reducible to a periodic Hamiltonian system with an equilibrium by a periodic symplectic mapping. This result is a reformulation of the result in Lu and Xu (Nonlinear Differ Equ Appl 21:361–370, 2014) in the case of Hamiltonian systems.

  • Referencias bibliográficas
    • 1. Butcher, E.A., Sina, S.C.: Normal forms and the structure of resonances sets in nonlinear time-periodic systems. Nonlinear Dyn. 23, 35–55...
    • 2. Eliasson, L.H.: Floquent solutions for the one-dimensional quasi-periodic Schrödinger equation. Commun. Math. Phys. 146, 447–482 (1992)
    • 3. Her, Hai-Long, You, Jiangong: Full measure reducibility for generic one-parameter family of quasiperiodic linear systems. J. Dyn. Differ....
    • 4. Johnson, R.A., Sell, G.R.: Smoothness of spectral subbundles and reducibility of quasiperodic linear differential systems. J. Differ. Equ....
    • 5. Jorba, A., Simó, C.: On the reducibility of linear differential equations with quasiperiodic coefficients. J. Differ. Equ. 98, 111–124...
    • 6. Jorba, A., Simó, C.: On quasi-periodic perturbations of elliptic equilibrium points. SIAM J. Math. Anal. 27, 1704–1737 (1996)
    • 7. Jorba, À., Villanueva, J.: On the persistence of lower-dimensional invariant tori under quasi-periodic perturbations. J. Nonlinear Sci....
    • 8. Li, J., Zhu, C.: On the reducibility of a class of finitely differentiable quasi-periodic linear systems. J. Math. Anal. Appl. 413(1),...
    • 9. Liang, J., Tang, L.: On the reducibility of a nonlinear periodic system with degenerate equilibrium. Dyn. Syst. 33(2), 239–252 (2018)
    • 10. Lu, X., Xu, J.: On small perturbations of a nonlinear periodic system with degenerate equilibrium. Nonlinear Differ. Equ. Appl. 21, 361–370...
    • 11. Nayfeh, A.H.: Method of Normal Forms. Wiley, New York (1993)
    • 12. Sanders, J.A., Verhulst, F.: Averaging Methods in Nonlinear Dyanmical Systems. Springer, New York (1985)
    • 13. Wooden, S.M., Sinha, S.C.: Analysis of periodic-quasi-periodic nonlinear systems via Lyapunov– Floquet transformation and normal forms....
    • 14. Xu, J.: On small perturbation of two-dimensional quasi-periodic systems with hyperbolic-type degenerate equilibrium point. J. Differ....
    • 15. Xu, J., Jiang, S.: Reducibility for a class of nonlienar quasi-periodic differential equations with degnerate equilibrium point under...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno