Ir al contenido

Documat


Dynamics of a Population with Two Equal Dominated Species

  • Rozikov, U A [1] ; Usmonov, J B [1]
    1. [1] Institute of Mathematics (Tashkent)
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 19, Nº 2, 2020
  • Idioma: inglés
  • DOI: 10.1007/s12346-020-00399-w
  • Enlaces
  • Resumen
    • We consider a population with two equal dominated species, dynamics of which is defined by an one-dimensional piecewise-continuous, two parametric function. It is shown that for any non-zero parameters this function has two fixed points and several periodic points. We prove that all periodic (in particular fixed) points are repelling, and find an invariant set which asymptotically involves the trajectories of any initial point except fixed and periodic ones. We showed that the orbits are unstable and chaotic because Lyapunov exponent is non-negative. The limit sets analyzed by bifurcation diagrams. We give biological interpretations of our results.

  • Referencias bibliográficas
    • 1. Kesten, H.: Quadratic transformations: a model for population growth, I, II. Adv. Appl. Probab. 2(2), 1–82 (1970)
    • 2. Ganikhodzhaev, R.N., Abdirakhmanova, R.E.: Fixed and periodic points of quadratic automorphisms of non-Volterra type. Uzbek Math. J. 2,...
    • 3. Ganikhodzhaev, R.N., Eshmamatova, D.B.: Quadratic automorphisms of simplex and asymptotical behavior of their trajectories. Vladikavkaz...
    • 4. Ganikhodzhaev, R.N., Mukhamedov, F.M., Rozikov, U.A.: Quadratic stochastic operators and processes: results and open problems. Inf. Dim....
    • 5. Ganikhodjaev, N.N., Ganikhodjaev, R.N., Jamilov, U.U.: Quadratic stochastic operators and zero-sum game dynamics. Ergodic Theory Dyn. Syst....
    • 6. Lyubich, Y.I.: Mathematical Structures in Population Genetics. Springer, Berlin (1992)
    • 7. Mukhamedov, F., Saburov, M., Jamal, A.H.M.: On dynamics of ξ s quadratic stochastic operators. Int. J. Mod. Phys.: Conf. Ser. 9, 299–307...
    • 8. Mukhamedov, M., Embong, A.F.: On b-bistochastic quadratic stochastic operators. J. Inequal. Appl. 226 (2015)
    • 9. Rozikov, U.A., Shamsiddinov, N.B.: On non-Volterra quadratic stochastic operators generated by a product measure. Stoch. Anal. Appl. 27(2),...
    • 10. Rozikov, U.A., Zada, A.: On - Volterra quadratic stochastic operators. Int. J. Biomath. 3(2), 143–159 (2010)
    • 11. Rozikov, U.A., Shoyimardonov, S.K.: On ocean ecosystem discrete time dynamics generated by - Volterra operators. Int. J. Biomath. 12(2),...
    • 12. Rozikov, U.A., Zhamilov, U.U.: On dynamics of strictly non-Volterra quadratic operators on twodimensional simplex. Sbornik: Math. 200(9),...
    • 13. di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems: Theory and Applications. Applied Mathematical...
    • 14. Rozikov, U.A.: An Introduction to Mathematical Billiards. World Scientific Publishing Co. Pte. Ltd., Hackensack (2019)
    • 15. Mukhamedov, F.M., Ganikhodjaev, N.N.: Quantum Quadratic Operators and Processes. Lecture Notes in Mathematics, vol. 2133. Springer, Cham...
    • 16. Devaney, R.L.: An Introduction to Chaotic Dynamical System. Westview Press, Boulder (2003)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno