Ir al contenido

Documat


Bifurcation Diagram and Global Phase Portraits of a Family of Quadratic Vector Fields in Class I

  • Jia, Man [1] ; Chen, Haibo [2] ; Chen Hebai [2]
    1. [1] Fuzhou University

      Fuzhou University

      China

    2. [2] Central South University

      Central South University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 19, Nº 2, 2020
  • Idioma: inglés
  • DOI: 10.1007/s12346-020-00402-4
  • Enlaces
  • Resumen
    • We study a family of quadratic vector fields in Class Ix˙=y,y˙=-x-αy+μx2-y2, where (α,μ)∈R2. To study the equilibria at infinity on the Poincaré disk of this system completely, we follow the method of generalized normal sectors of Tang and Zhang (Nonlinearity 17:1407–1426, 2004) and give further two new criterions, which allows us to obtain not only the qualitative properties of the equilibria but also asymptotic expressions of these orbits connecting the equilibria at infinity of this system. Further, the complete bifurcation diagram including saddle connection bifurcation curves of this system is given. Moreover, by qualitative properties of the equilibria, the nonexistence of limit cycle and rotated properties about α and μ, all global phase portraits on the Poincaré disk of this system are also obtained and the number is 19.

  • Referencias bibliográficas

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno